
© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Automatic Polygon Layout for
Primal-Dual Visualization of Hypergraphs

Botong Qu, Eugene Zhang, Senior Member, IEEE, and Yue Zhang, Member, IEEE

(a) primal view (b) dual view (c) jointly optimized primal view (d) jointly optimized dual view

Fig. 1: A polyadic dataset with 39 entities and 14 relationships is visualized using a polygon-based approach [32]. In the primal
view (a), each polygon represents a relationship and the vertices in a polygon represent the entities in the corresponding relationship.
The layout is generated by applying our automatic optimization algorithm (Section 4). In (b), we show the dual view of the same
data, in which the vertices represent the relationships and the polygons represent the entities in the data. The layout is also generated
using our optimization algorithm. In (c) and (d), we show the primal and dual views after applying our joint optimization (Section 5).
The color of a vertex in one view is the same as that of its corresponding polygon in the other view.

Abstract— N-ary relationships, which relate N entities where N is not necessarily two, can be visually represented as polygons whose
vertices are the entities of the relationships. Manually generating a high-quality layout using this representation is labor-intensive. In
this paper, we provide an automatic polygon layout generation algorithm for the visualization of N-ary relationships. At the core of our
algorithm is a set of objective functions motivated by a number of design principles that we have identified. These objective functions
are then used in an optimization framework that we develop to achieve high-quality layouts. Recognizing the duality between entities
and relationships in the data, we provide a second visualization in which the roles of entities and relationships in the original data are
reversed. This can lead to additional insight about the data. Furthermore, we enhance our framework for a joint optimization on the
primal layout (original data) and the dual layout (where the roles of entities and relationships are reversed). This allows users to inspect
their data using two complementary views. We apply our visualization approach to a number of datasets that include co-authorship
data and social contact pattern data.

Index Terms—Hypergraph visualization, N-ary relationships, optimization, polygon layout, duality, primal-dual visualization

1 INTRODUCTION

Polyadic relationships are prevalent in datasets from social networks
and biology. A polyadic relationship can involve N entities in the data
and is also referred to as an N-ary relationship. For example, in an
academic publication dataset, a paper can be considered as an N-ary
relationship that involves all of its authors.

A polyadic dataset can be theoretically modeled as a hypergraph, in
which an entity is a vertex and an N-ary relationship is a hyperedge of
N vertices, each of which corresponds to one entity in the relationship.
Given the high-dimensionality and the rich structures usually associated

• B. Qu is with the School of Electrical Engineering and Computer Science,
Oregon State University. E-mail: qub@oregonstate.edu.

• E. Zhang is a Professor with the School of Electrical Engineering and
Computer Science, Oregon State University. E-mail:
zhange@eecs.oregonstate.edu.

• Y. Zhang is an Associate Professor with the School of Electrical Engineering
and Computer Science, Oregon State University. E-mail:
zhangyue@oregonstate.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

with hypergraph data, they often need to be inspected using a variety
of visual metaphors with their respective strengths. Region-based
techniques are a class of approaches that emphasize the distribution
of vertices and hyperedges in the data based on additional criteria [2].
In this approach, a vertex in the data is represented as a point and a
hyperedge as a region that encloses all of its vertices. However, it can
be difficult to visually extract basic information such as the number of
vertices in a hyperedge and the set of hyperedges that are incident to a
given vertex or share at least one vertex with a given hyperedge. Such
information can be important for underlying applications.

One recently developed approach [32] uses an N-sided polygon to
represent an N-ary relationship (hyperedge) whose entities (vertices)
are the vertices of the polygon, which makes it easier to see individual
N-ary relationships and how they are related to each other (e.g., no
overlapping vertices or multiple overlapping vertices). The vertices
are initially placed using a force-directed graph layout method [20].
However, this can lead to concave polygons in the layout, which can
make it difficult to see the number of vertices in such polygons. Qu
et al. [32] provide a set of layout editing operations such as moving a
vertex, moving a polygon, scaling a polygon, and rotating a polygon.
However, this manual postprocessing step can be labor-intensive, which
greatly limits the potential application to larger datasets. As an example
(shown in the accompanying video), manual design of a dataset with
81 vertices and 22 hyperedges required over seven minutes.

1

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

In this paper, we address this issue with an automatic framework
for the generation of polygonal layouts for polyadic datasets. Our
framework includes the following novel aspects compared to [32]:

1. A number of design principles for a polygonal layout.

2. A set of objective functions motivated by the aforementioned
design principles.

3. The visualization for unary relationships.

4. An operation called starrization that we develop to prevent the
folding of a polygon during the optimization process.

5. An operation called pair swap that allows the explicit control over
the order of the vertices in a polygon.

Our optimization algorithm allows larger datasets to be visualized
at a higher quality without manual editing. For example, for the afore-
mentioned dataset where manual editing took over seven minutes, our
optimization framework took less than one second (see the accompa-
nying video). Table 1 in Section B (Appendix) provides the timing
comparison statistics between the manual postprocessing [32] and our
optimization method for this dataset and two other datasets.

In addition, recognizing the duality between the entities and re-
lationships in a dataset, we provide our users with both the primal
visualization and the dual visualization, in which the roles of the enti-
ties and relationships are reversed. The primal and dual visualizations
can be generated independently (Figure 1 (a-b)) or through a joint opti-
mization process that we have developed (Figure 1 (c-d)). A vertex (or
a polygon) can be selected in either the primal view or the dual view,
and its corresponding polygon (or vertex) is highlighted in the other
view. Since certain tasks can be performed more easily in one view
and some related tasks may be performed better in the other view, our
dual visualization allows the user to take advantage of the availability
of both views simultaneously.

To evaluate the effectiveness of our approach and optimization frame-
work, we conduct a user study and compare our visualization results
to three recent region-based visualization techniques whose software
are available: EulerView [38], HyperVis [3], and the Zykov repre-
sentation [31, 48]. The layouts of Zykov are generated by applying
a force-directed method [13] to the wheel associated graph [3]. The
user study indicates that our visualization technique outperforms these
techniques in terms of both accuracy and speed. We also apply our
visualization to datasets from co-authorship and social contact patterns.

2 RELATED WORK

A hypergraph is an extension of a graph. Many graph drawing algo-
rithms exist [16], and they usually represent the vertices and edges in
the data with geometric objects. In the visual metaphor of Qu et al. [32],
polygons are used to represent hyperedges in the data.

There has been much work in hypergraph visualization [2,44]. Many
existing techniques are based on Euler and Venn diagrams [29, 35, 39],
which focus on showing whether and by how much two hyperedges in
the data intersect. For N-ary relationship visualization, it is important to
show not only whether two relationships (hyperedges) share common
entities (vertices), but also which entities are part of a given relationship.

Matrix-based techniques [23, 25, 36] model a hypergraph using a
table. The hyperedges and/or vertices are mapped to a row, a column,
or an entry in the matrix. When the number of rows and/or the number
of columns is relatively large, it can be difficult to count the number of
non-empty entries in a row or column or to decide whether two entries
are in the same row or column. The effectiveness of this approach
depends on whether the rows and columns can be sorted in a certain
way [2]. In addition, some matrix-based techniques such as the UpSet
method [25] do not explicitly model the vertices in the data. Instead,
they are inferred from the intersections of hyperedges.

Another approach treats the hypergraph as a bipartite graph [1,8,40],
in which both the vertices and the hyperedges are the nodes in the graph,
though of different colors. Thus, the visualization of hypergraphs is
converted to the visualization of bipartite graphs. Addressing the often

large number of edge crossings in the visualization is the main challenge
one faces using such an approach.

As an extension to the Euler and Venn diagrams, the subset-based
approach [1, 3, 34, 37] visualizes each hyperedge as a simple loop that
defines a region. The vertices incident to a hyperedge are visualized
as points enclosed by the loop. In some of the techniques [1, 34], a
vertex belonging to multiple hyperedges can be duplicated as multiple
points. The copies of the same vertex are connected using curves. The
subset-based approach is designed to handle hyperedges with over-
laps [2]. However, certain properties of individual hyperedges such as
their cardinalities are not explicitly represented in some of these visual-
ization methods [34, 37]. In our work, we reuse the two-dimensional
CW-complex approach of Qu et al. [32] in which each relationship (hy-
peredge) is mapped to a polygon whose number of edges encodes the
cardinality of the hyperedge. To alleviate the intensive labor associated
with manual editing during layout generation, we aim to provide an
automatic layout algorithm.

A more recent approach models a hypergraph as a metro map (tran-
sit map) in which each hyperedge is modeled as a metro line with
its vertices being the metro stations on the line. This approach al-
lows the rich techniques of transit map generation [46] to be applied
to hypergraph visualization. Frank et al. [12] investigate the theoret-
ically minimum number of crossings between different metro lines
(hyperedges) while Jacobsen et al. [22] provide practical optimization
algorithms for the fast generation of high-quality metro maps for given
hypergraphs. While this approach can make it easier to see the overlaps
between different hyperedges, it can be challenging to quickly see the
cardinality of a hyperedge, especially when its corresponding metro
line partially overlaps with other metro lines.

Evans et al. [10] propose to represent a hypergraph using a set of
3D polygons such that each polygon corresponds to a vertex in the
hypergraph. They further investigate the theoretical feasibility of such a
representation. However, the technique is not demonstrated on any data
due to its theoretical nature, nor is an algorithm provided in generating
a visualization based on this approach.

There has also been work on cluster visualization and community
visualization [6, 11, 45]. In these setups, the nodes in the data are
partitioned so that each node belongs to exactly one cluster or a pre-
dominant community [7] while having connections to other nodes in
the data, including those in other clusters or pre-dominant communities.
The visualization then focuses on placing each cluster or pre-dominant
community in such a way that there is a clear spatial separation of the
clusters or the communities [11]. The positions of the nodes in each
cluster or pre-dominant community can be further improved through
local operations [6]. To increase readability, glyphs are used to replace
clusters and communities in order to provide a more abstract visualiza-
tion of the relationships between clusters and communities [4,9,45]. In
hypergraphs, each vertex can belong to multiple hyperedges. Spatially
grouping the vertices based on their clusters and pre-dominant commu-
nities can have the unintended side effect of downplaying community
memberships that are not chosen as the pre-dominant ones. In our work,
we consider all hyperedges important and visualize them as such. A
number of interactive tools are available [41, 42, 47] that support the
exploration of bicluster data. As the data is visually represented using
graphs, cluttering can occur as a result of excessive edge crossings [2].

3 DATA REPRESENTATION

A polyadic dataset consists of a set of entities V and a multiset of
relationships R. Each relationship r ∈ R is a subset of V , and each entity
must belong to at least one relationship. An entity can have attributes
such as importance. Note that we allow two relationships to have an
identical set of entities. We partition R as R = R1∪R2∪ ...∪R|V | where
|V | is the number of elements in V . An element r ∈ Rk (k ≥ 1) is a
subset of V with k elements. For example, R1 consists of all unary
relationships in the data and R2 of all binary relationships. Note that
we require a relationship to have at least one entity and at most |V |
entities. Furthermore, the order of the entities in an N-ary relationship
is of little significance in our applications.

2

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Polyadic data can be modeled as a hypergraph, with vertices (en-
tities) and hyperedges (relationships). The polygonal representation
of such data [32] represents a hyperedge as a polygon, leading to a
two-dimensional CW-complex [18] for the hypergraph. In the remain-
der of the paper, we will not differentiate between entities (semantics)
and vertices (both theoretical and visual representations). Similarly,
we will not differentiate among relationships (semantics), hyperedges
(theoretical representation), and polygons (visual representation). More
specifically, we will use vertices and polygons in the next sections.

The degree of a vertex is the number of polygons that contain this
vertex. The cardinality of a polygon is the number of vertices in
the polygon. Furthermore, the degree of a polygon is the number of
polygons that share at least one vertex with the polygon. When a vertex
is part of a polygon, they are incident to each other.

4 AUTOMATIC CW-COMPLEX LAYOUT OPTIMIZATION

We aim to provide an algorithm for the generation of a high-quality CW-
complex layout for a given polyadic dataset. As with any optimization
problem, we need the following components: (1) an objective function,
and (2) an optimization framework. We describe both in this section.

4.1 CW-Complex Layout Principles
Before describing our objective functions, we state a number of design
principles for CW-complex layouts that can produce clarity in the final
layout.

1. Every polygon should be regular.

2. All polygons of the same cardinality should have the same area.

3. Polygons with larger cardinalities should have larger areas.

4. No polygon should contain self-overlaps and flips.

5. Unnecessary overlaps between polygons should be avoided.

6. When two polygons share at least three vertices, the intersection
polygon should also be regular.

7. Two vertices should not overlap each other.

8. A vertex should not appear on the border or in the interior of a
polygon when the vertex is not part of the polygon.

These principles are motivated by the following observations.
First, the number of edges in a polygon can be best perceived when

the polygon is regular (Principle 1) and is sufficiently large. In addition
to the number of sides in the polygon, we also wish to use the area of the
polygon to encode the cardinality of the underlying N-ary relationship
(Principles 2 and 3).

Second, a polygon with self-overlaps and flips (Figure 2) can make it
more difficult to recognize the cardinality of the polygon (Principle 4).

Third, when two polygons with at most two shared vertices overlap
in the layout (Figure 3), it can lead to the false impression that the
polygons share more common vertices (Principle 5).

(a) (b)

Fig. 2: Self-overlaps (a) and flips (b) in a polygon can make it difficult
to recognize the cardinality of the polygon.

(a) (b) (c)

Fig. 3: This figure illustrates the motivations behind Principle 5. The
two relationships share (a) zero, (b) one, and (c) two vertices, respec-
tively. The interiors of the polygons partially overlap, which can distort
the interpretation of the amount of sharing.

Fourth, when two polygons share at least three vertices and the poly-
gon formed by the shared vertices is not regular, it can be more difficult
to see the cardinality of the intersection polygon, i.e. the number of
shared vertices (Principle 6). Figure 4 contrasts two examples where
the polygons’ shared vertices form a regular polygon (b) and a highly
non-regular one (a).

In addition, when two vertices overlap, they can appear as one
(Principle 7). Similarly, if a vertex appears on the boundary or interior
of a polygon not incident to it, the user can be given the false impression
that the vertex is part of the polygon (Principle 8).

Principles 3, 5, and 8 have been applied in existing subset-based hy-
pergraph visualization, while the other principles that we have identified
are rather specific to the polygon metaphor.

4.2 Objective Function
Based on the aforementioned design principles for hypergraph visual-
ization, we formulate the following energy terms which are combined
into the objective function used during the optimization.

Polygon Regularity (PR) Energy: The isoperimetric ratio of
a polygon [14], defined as P2

A where P and A are respectively the
perimeter and area of the polygon, is a measure for the regularity of the
polygon. Given an n-sided polygon, this measure is minimized when
the polygon is regular (Principle 1), which is Cn = P2

A = n2
n
4 cot(π/n) =

4n
cot(π

n)
. The isoperimetric ratio also favors convex polygons over non-

convex polygons and over polygons with self-overlaps or flips.
Since the area of a polygon is a quadratic polynomial with respect

to the X- and Y -coordinates of its vertices, the isoperimetric ratio is
a radical (with square root terms). Using it directly as an energy can
make the optimization process more challenging. Instead, we make use
of the following PR energy term:

EPR = ∑
Γ

P2(Γ)−C|Γ| ·A(Γ) (1)

for all polygons Γ in the data. A(Γ), P(Γ), and |Γ| are the area, perime-
ter, and cardinality of Γ, respectively. This energy is non-negative and

(a) (b)

Fig. 4: When two convex polygons share at least three vertices, over-
laps of the polygons are unavoidable. When the intersection polygon
(shaded) is not regular (a), it can be more difficult to recognize the
cardinality of the intersection polygon than when the intersection is
regular (b).

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

is zero only when Γ is regular.

Polygon Area (PA) Energy: To satisfy Principles 2 and 3, we
observe that for regular polygons whose edge lengths are 1, the area of
the polygons is a monotonically increasing function of the cardinality
of the polygons. That is, when combined with Principle 1 whose
corresponding energy term is EPR, we can formulate a PA energy by
requiring all edges in the layout to have the unit length as follows:

EPA = ∑
e
(l(e)−1)2 (2)

where e is any edge in any of the polygons in the data and l(e) is the
length of e. We will discuss how edges are generated in a polygon
in Section 4.3. Note that while EPA itself does not ensure appropriate
areas for polygons, it can do so when the polygon is regular. Therefore,
combining the PR and PA energies can address Principles 1, 2, and 3.

Polygon Separation (PS) Energy: Principle 5 suggests that when
two relationships share at most two entities, it is desired to arrange the
corresponding polygons in such a way to avoid having any intersection
in the interior of the polygons. However, this is not always possible
given the complexity of the data. To address this, we define the polygon
separation (PS) energy for the case when the two relationships share
zero, one, or two entities.

We approximate each polygon Γ by a circle whose center is the
centroid of Γ and whose radius is the circumradius of a regular n-gon
whose edge lengths are 1. Note that in this case the circumradius is
ρn =

1
2 csc π

n .
When the two regular polygons Γ1 and Γ2 share zero vertices, as

illustrated in Figure 5 (a), the minimal distance between their circum-
centers is the sum of their circumradii. To prevent that the two polygons
touch, we add a buffer distance db. Therefore, the minimal distance be-
tween the centroids of the polygons is d0(|Γ1|, |Γ2|) = ρ|Γ1|+ρ|Γ2|+db,
where |Γ1| and |Γ2| are the cardinalities of Γ1 and Γ2, respectively.
Based on this analysis, we define the polygon separation energy for this
pair of polygons as :

EPS(Γ1,Γ2) = f (d(Γ1,Γ2)−d0(|Γ1|, |Γ2|)) (3)

where d(Γ1,Γ2) is the distance between the centroids of the polygons

and f (x) =
{

x2 if x≤ 0
0 otherwise .

When the two polygons share one vertex (the pivot), the distance
between the polygons is measured in terms of the angle between the
line segments formed by the pivot and the centroids of the two poly-
gons (Figure 5 (b)). When the two polygons are regular, the minimal
angle between the two line segments is π

(
|Γ1|−2
2|Γ1| +

|Γ2|−2
2|Γ2|

)
. Similar

to the previous case, we add a buffer angle ab such that the mini-
mum angular distance between the two polygons is a0(|Γ1|, |Γ2|) =
π(
|Γ1|−2
2|Γ1| +

|Γ2|−2
2|Γ2|)+ab.

Let a(Γ1,Γ2) be the angle between the two line segments in the
current configuration. Then the polygon separation energy for this pair
of polygons is

EPS(Γ1,Γ2) = f (a(Γ1,Γ2)−a0(|Γ1|, |Γ2|)). (4)

When the two polygons share two vertices (Figure 5 (c)), it is desir-
able that the shared vertices form an edge for both polygons. In this
case, the ideal distance between the circumcenters of the polygons is
d1(|Γ1|, |Γ2|) = 1

2 (cot π

|Γ1|+cot π

|Γ2|). Therefore, we define the polygon
separation energy in this case as

EPS(Γ1,Γ2) = f (d(Γ1,Γ2)−d1(|Γ1|, |Γ2|)). (5)

While it is possible that the two shared vertices do not form an edge
in one of the polygons, in Section 4.3 we introduce operations that can
change the order of the vertices in the polygons that may lead to the
desirable vertex orders for the polygons.

(a) (b) (c)

Fig. 5: The illustration of polygon separation energy when two poly-
gons share zero (a), one (b), and two (c) vertices, respectively.

Finally, when two polygons share at least three vertices, their inte-
riors inevitably overlap. In this case, we define the PS energy to be
zero.

The total polygon separation energy is thus defined as

EPS = ∑
Γ1,Γ2

EPS(Γ1,Γ2) (6)

for all pairs of polygons in the data. Note that besides Principle 5, our
PS energy also aims to address Principles 7 and 8. That is, when two
polygons are properly positioned, their vertices cannot overlap, nor can
a vertex of one polygon appear in the interior of another polygon.

The separation among monogons is different since a monogon shares
at most one vertex with other polygons. Besides, in contrast to other
polygons, the location of the incident vertex is not the only factor that
decides the drawing of a monogon.

Each monogon is drawn as the shape of a waterdrop which com-
prises a semicircle tip and two intersecting line segments tangent to the
semicircle (Figure 6 (a)). The intersection point of the line segments
is the vertex of the monogon, while the center of the semicircle is the
center of the monogon. In our system, all monogons have the same size,
which is controlled by the radius of the semicircle in each monogon as
well as the distance between the center and vertex of the monogon.

There are two degrees of freedom when drawing a monogon: the
orientation angle λ and its incident vertex’s location. After optimizing
the locations of vertices, one degree of freedom is fixed. However, a
good orientation angle still needs to be decided for each monogon to
reduce the overlapping between the monogon and its incident polygons.

We formulate the polygon separation energy for a monogon Γ1 and
a polygon Γ2 as follows:

EPS(Γ1,Γ2) =
w

d(Γ1,Γ2)2 (7)

where w is a weight to control the separation force between different
polygons. If both Γ1 and its incident polygon Γ2 are monogons, then w
is set to 0.1 to make monogons cluster together since we observe that
this facilitates the counting of the monogons when needed. The weight
w is 1 otherwise.

This separation energy is calculated for every monogon and all of its
incident polygons, so the total polygon separation energy for monogons
is

EPS(monogons) = ∑
Γ1∈R1,Γ1∩Γ2 6= /0

EPS(Γ1,Γ2). (8)

Polygon Intersection (PI) Energy: When two relationships share
at least three entities, their polygons must overlap with an interior.

4

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

(a) (b)

Fig. 6: (a) The orientations of monogons are optimized to decrease
the repulsion between its center and other polygons’ centers. The
orientation of the monogon is measured by the angle λ which is the
angle between the X-axis and the line segment which connects the
monogon center and the only incident vertex. The monogon center is
the center of the semicircle tip of the waterdrop. (b) A hexagon (brown)
and an enneagon (pink: nine-sided) share 3 vertices (filled circles with
red boundary). The three shared vertices evenly separate the edges of
the enneagon into three segments (colored differently).

Principle 6 states that the polygon formed by the shared vertices should
be regular.

Let Γ0 be the intersection polygon of Γ1 and Γ2. The vertices of
Γ0 divide the boundary of Γ1 into |Γ0| segments, each of which is a
collection of consecutive edges of Γ1 (Figure 6 (b)). For Γ0 to stay
regular, we need that each segment has the same number of edges of
Γ1. Clearly, this is only possible when the number of edges of Γ1 is
divisible by the number of edges of Γ0. Still, we strive to distribute the
edges of Γ1 as evenly as possible into the above segments.

Let si be the total length of segment i where 1≤ i≤ |Γ0|. We define
the division energy of Γ0 with respect to Γ1 as

µ(Γ0;Γ1) =
|Γ0|

∑
i=1

(
si−
|Γ1|
|Γ0|

)2
(9)

where |Γ1|
|Γ0| represents the ideal average length of each segment. This

is under the assumptions that each edge in the polygon has a length
of one and the perimeter of the polygon Γ1 is |Γ1|. We can similarly
define the division energy of Γ0 with respect to Γ2, which we denote
by µ(Γ0;Γ2).

The polygon intersection (PI) energy is then defined as

EPI = ∑
Γ1,Γ2

µ(Γ1∩Γ2;Γ1)+µ(Γ1∩Γ2;Γ2)+EPR(Γ1∩Γ2) (10)

over all pairs of polygons Γ1 and Γ2 whose intersection polygon con-
tains at least three vertices.

Our final objective function is thus kPREPR + kPAEPA + kPSEPS +
kPIEPI . To identify good values of the weights kPR, kPA, kPS, and kPI ,
we collect 19 datasets. The number of hyperedges ranges from 23 to
198, and the number of entities ranges from 76 to 527. We sample 49
weight sets (kPR, kPA, kPS, kPI) by bilinearly interpolating among four
weight sets (100,1,1,1), (1,100,1,1), (1,1,100,1) and (1,1,1,100),
which we consider the corners of a square. The square is then covered
by a 7× 7 grid, each grid point represents a sampling weight. After
conducting 49×19 experiments, we check which five weight sets could
give us the average lowest sum energy without weighting. We get the
final weight set by normalizing the average of these top five weight sets.
Based on this experiment, we choose the following values: kPR = 0.30,
kPA = 0.16, kPS = 0.36, kPI = 0.18.

Principle 4 is automatically fulfilled since we do not allow self-
overlaps and flips in any polygon. We describe how to achieve this in
Section 4.3.

4.3 Polygon Layout Optimization
Our optimization framework consists of the following stages. First, we
generate an initial layout. Next, the layout is iteratively improved to

(a) (b)

Fig. 7: The starrization operation changes the order of vertices of the
polygon to eliminate self-overlaps and flips. Compare the examples in
this figure to those shown in Figure 2. The centroids, O, required by
the starrization operation, are shown in both examples.

achieve lower values with respect to the objective function. The process
stops when some termination criteria are met. We now describe each
of these steps in detail.

Initial Layout and Starrization: Our system can generate different
initial layouts, such as placing all the vertices in the data on a circle
(circular initial layout) or randomly (random initial layout). We can also
convert the hypergraph data into a graph by treating each hyperedge
as a clique in the graph. The vertices are then placed by using a force-
directed algorithm [20].

Once all the vertices have been positioned, we need to construct the
polygon for each relationship in the data. Note that the order of the
vertices in the polygon is not meaningful with respect to the underlying
relationship. However, randomly selecting the order of entities in a
relationship can lead to a polygon with self-overlap or flip (Figure 2),
thus violating Principle 4.

To address this issue, we employ a procedure which we refer to as the
starrization. The input to this procedure is the positions of the vertices
in a polygon without the connectivity information. The starrization then
computes the centroid of the convex hull for the vertices of the polygon
(Figure 7). The centroid is then used as a reference point, with the
vertices in the polygon sorted by their angular coordinates. This gives
rise to an order of the vertices in the polygon that is guaranteed to be free
of self-overlaps and flips (compare the polygons before starrization in
Figure 2 and the corresponding polygons after starrization in Figure 7).
Note that our problem is related to but different from the problem of
creating a polygonal region based on a set of points inside the region
and a set of points outside the region [33].

Energy Minimization: Given the initial layout, our automatic lay-
out algorithm iteratively improves the layout by finding new locations
of the vertices in the data and the order of the vertices in the polygons.
We treat the locations of the vertices as a variable vector in a 2|V |-
dimensional space where |V | is the number of entities (vertices) in the
data. The 2D coordinates of the vertices are consecutively encoded into
the variable vector.

There are two operations performed. The first operation is to find a
layout that yields the local minimum of energy. Because our objective
functions are all arithmetic, we use the automatic differentiation library
Adept [19] to monitor the evaluation of the objective functions so that
the gradient can be calculated automatically. With the capability to
calculate the gradient, we choose to use the quasi-Newton optimiza-
tion method L-BFGS [27] due to the speed and memory efficiency
of this solver. During the optimization, the L-BFGS algorithm uses
the gradient information to update the search direction and performs
a one-dimensional search for the minimum of the energy on the line
in the search direction [30]. The solver has been shown to be able
to handle non-linear optimization problems very well [28]. Note that
starrization is performed when evaluating energies for potential new
locations of vertices. This ensures that no self-overlaps and flips can
occur after the optimization.

The second operation evaluates, for each pair of vertices in the
same polygon, the objective function before and after the two vertices’
locations are swapped. Note that the orders of the vertices in the

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

polygon are also swapped. While a pair swap does not impact the
shape of the polygon, it can impact other polygons that are incident
to the vertices. Consequently, we perform starrization to the adjacent
polygons to ensure no self-overlaps and flips after the swap. If a swap
improves the objective function, the swap is accepted. Otherwise, it is
rejected. Note that each pair of vertices inside each polygon is evaluated
until no swap improves the energy.

The optimization alternates between the iterative line searches and
the pair swaps. This process continues until there is no further gain in
the objective function by the line searches and the pair swaps. Note
that since our optimization problem is multi-objective and non-convex,
there is no guarantee that a global minimum can be found.

Note that translating or rotating a layout does not change its evalu-
ation with respect to the objective function. Consequently, we fix the
locations of two vertices while optimizing for the positions of the other
vertices during a line search.

Our default initial layout is based on the force-directed algorithm
of Hu [20]. However, while different initial layouts can lead to differ-
ent optimized layouts, it is not clear which initial layout consistently
outperforms the other ones. Consequently, we provide different initial
layout options in our system. Figures 12, 13, and 14 in Section A
(Appendix) compare various optimized layouts (right) based on the
three initial layout schemes (left). Given that the problem of finding
a polygonal layout with minimal polygon overlaps is similar to the
crossing number problem [15], which is known to be NP-hard, it is
unlikely that any of the initial layouts guarantees to generate the global
optimal layout. We observe that the force-directed scheme tends to lead
to fewer overlaps in the polygons. On the other hand, the circular and
random schemes tend to generate layouts that are space-filling. There
is a trade-off between space utilization and the amount of unnecessary
overlaps. We have made all three options available in our system, and
used the force-directed method to generate the layouts for our user
study.

5 DUAL-VIEWS AND JOINT OPTIMIZATION

While the polyadic data pre-determines the roles of the entities and
relationships, such a role assignment can be arbitrary. For example,
in a paper–author dataset, a reader may consider each author as an
entity and each paper as a relationship over its authors. On the other
hand, a researcher might consider his/her papers as the entities while
the authors as relationships over the papers they have authored. The
paper-centric view and the author-centric view can be seen as “the two
sides of the same coin”. In general, any data can have two views: (1)
the primal view based on the input data model, and (2) the dual view in
which the roles of the entities and relationships in the data are reversed.

Given these observations, we provide a synchronized optimization
and visualization framework in which both viewpoints are not only
optimized and displayed individually (e.g. Figure 1 (a) and (b)), but
also optimized jointly and displayed side-by-side (e.g. Figure 1 (c-d)).

When generating the layout for the dual view, we wish to position
each polygon’s dual element, which is a vertex in the dual view, as
close as possible to this polygon’s centroid in the primal view. This
allows the correspondence between the polygon and its dual vertex
to be relatively easily perceived. To achieve this goal, we define the
following energy.

Dual Distance Energy (DD). Let Dual(v) be the polygon dual to
v. For a polygon Γ, let O(Γ) be its centroid. The dual distance (DD)
energy for the whole layout is then defined as

EDD = ∑
vi∈V

(O(Dual(vi))− vi)
2. (11)

With the dual distance energy, the objective function becomes
kPREPR + kPAEPA + kPSEPS + kPIEPI + kDDEDD where kPR = kPA =
kPS = kPI = kDD = 0.2 by applying equal weights to scalarize the
multi-objective function into one scalar function. Note that our sys-
tem allows users to change the weights to prioritize different design
principles during the optimization.

When conducting the joint optimization, we optimize the two views
simultaneously. That is, the locations of the vertices in the primal view

and the locations of the vertices in the dual view are formed as one
high-dimensional vector and used to evaluate the objective function
that includes all the energy terms for the primal view and the dual view
as well as the DD energy. A new configuration (a layout for the primal
and a layout for the dual) is accepted only if the total energy decreases.
This applies to both the line search and the pair swap operation.

In both the primal and dual views, a monogon corresponds to a
degree-one vertex in the other view. To assist the mapping between
monogons and their dual elements, the objective function EDD (Equa-
tion 11) can be applied again locally.

We still use the same optimization solver to minimize the energy
for monogons. However, for monogons, the input becomes a vector of
|R1| variables where |R1| is the number of monogons in the hypergraph.
Each variable corresponds to the orientation angle λ of a monogon.
Note that when optimizing the monogons, all other terms of our energy
are no longer useful since a monogon is always regular, in the ideal
length, and shares only one vertex with any other polygon.

6 VISUALIZATION AND FUNCTIONALITIES

Our visualization system allows the user to load a hypergraph and
visualize it. To increase perceptibility, each vertex is rendered as a
sphere with reflective material. Each edge is rendered as a cylinder
that is also reflective. Each polygon is rendered with reflective and
translucent material. This leads to rendering effects that are similar to
the Cushioned Treemaps [43].

When multiple polygons intersect, polygons with larger cardinalities
are behind those with smaller cardinalities. This choice is similar to
that of Kelp Diagrams [5].

The colors of the polygons can be based on the properties of the
underlying relationships. To increase the readability of overlapping
polygons, we use colors suggested by ColorBrewer [17].

We provide two views, one for the primal representation and the other
for the dual representation. The user can choose to see either view only
or both. When both views are shown, the user can also select a vertex
or a polygon in one view to inspect its properties. The corresponding
polygon or vertex in the other view is highlighted automatically.

7 PERFORMANCE AND EVALUATION

Our optimization framework requires repeated evaluation of the objec-
tive function given the current layout configuration (after starrization).
Recall that |V | and |R| are the numbers of vertices and hyperedges in
the data, respectively. The computation of the PR and PA energies have
a complexity of O(|V |+ |R|). On the other hand, the computation of
the PS and PI energies is more computationally costly as it requires
processing each pair of hyperedges in the data. The complexity for
the PS and PI energies is O((|V |+ |R|)2). Similarly, each starrization
operation has a complexity of O((|V |+ |R|)2). This means that each
evaluation of the objective function is of the complexity O((|V |+ |R|)2).
During each line search, there are a constant number of objective func-
tion evaluations. On the other hand, each sequence of pair swaps incur
O((|V |+ |R|)2) number of objective function evaluations, one per a
potential pair swap. Thus, the complexity of each such sequence is
O((|V |+ |R|)4). Since the number of times of consecutive line searches
and pair swaps depends on both the sizes of the data and the conver-
gence criteria, our optimization framework has an overall complexity
of ω((|V |+ |R|)4).

We have tested our optimization framework on eight datasets. Six of
the datasets were collected from the DBLP database [26] with different
search criteria and two were from an infectious disease dataset [21].
The smallest dataset has 76 entities and 26 relationships, while the
largest dataset has 527 entities and 232 relationships. The time to
perform the automatic optimization (either primal or dual) ranges from
0.25 seconds for the smallest dataset to 181.69 seconds for the largest
dataset. When performing joint optimization, the time ranges from
1.37 seconds for the smallest data to 268.82 seconds for the largest
data. The timing results were taken from a computer with an Intel(R)
Xeon(R) E-2124G CPU @ 3.4 GHz and 64 GB RAM.

We conducted a user study with 21 participants including five un-
dergraduate students and 16 graduate students to understand how the

6

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

(a) Q1

(b) Q2 (c) Q3

(d) Q4 (e) Q5

Fig. 8: This figure shows the resulting statistics of our survey with 21
participants. For Q1, Q4, and Q5, the yellow bars represent the accuracy
rate for each question and each method. The green bars represent the
timing results (in seconds). The scale of accuracy is always shown on
the left of the figure, and the scale of the timing is shown on the right.
The standard error of the accuracy and timing results (yellow and green
bars) are included as black line segments. Note that the standard error is
zero for the polygon-based method in Q1. Consequently, the standard
error in this case is not shown by the graphing software. The user
preferences over the four methods inquired in Q2 and Q3 are shown in
pie charts.

polygon-based layout compares to existing subset-based hypergraph
visualization techniques and whether the incorporation of the dual view
helps with data analysis.

Due to the ongoing COVID-19 pandemic and the resulting university
closure, the user study was conducted remotely. The participants of
our study consisted of 19 students in Computer Science, 1 student in
Physics, and 1 student in Mechanical Engineering. To our knowledge,
the participants were not familiar with hypergraphs and their visualiza-
tion. They were given five questions in the form of an online survey.
Their answers and the time it took a participant to answer each question
were recorded. The questions were as follows:

Q1 How many authors are part of the paper with the most co-authors?

Q2 Which layout helps you most effectively determine whether the
two papers with the most co-authors share an author?

Q3 Which layout helps you most effectively find the paper with the
greatest number of authors?

Q4 How many papers does the most productive author have?

Q5 How many authors does the most authored paper of the most
productive author have?

The first three questions were designed to compare our technique
with three recent hypergraph visualization techniques that are region-
based and whose software was available: EulerView [38], HyperVis [3],
and the Zykov representation [31,48] with the layout generation method
based on wheel graph introduced in [3]. The results of these techniques
were generated by using the released codes of these methods so that
the colors and layouts were consistent with the respective published
work. To provide some context to the questions, we used the data
based on author-paper interpretation. That is, each polygon was a paper
and the vertices of the polygon represented its authors. In our survey,
the colors of the polygons were based on qualitative color schemes of
ColorBrewer [17], which are designed for categorical attributes. Thus,
the participants still needed to extract the cardinality of a polygon based
on the number of edges in the polygon.

Question Q1 consisted of four individual questions. For each sub-
question, the participants were given one of the four region-based
hypergraph layouts: (a) EulerView, (b) HyperVis, (c) Zykov, and (d) N-
ary (ours). Note that the layouts were based on the same dataset created
synthetically, with 12 papers (polygons) over 36 authors (vertices). The
order of the sub-questions was randomized and differed from user to
user. As shown in Figure 8 (a), the accuracy rate was the highest for
our method. While the accuracy rate for Zykov’s approach was also
high, the average time to answer the question was 60 seconds versus
40 seconds for our approach. The standard errors of the data are also
shown, which are comparable for the timing of all four techniques. On
the other hand, the standard error is zero for our technique, indicating
that all participants answered Q1 correctly.

Questions Q2 and Q3 were designed to understand the effective-
ness of the four hypergraph visualization methods in conveying the
relationships among hyperedges (N-ary relationships) in the data and
the distribution of the cardinalities of N-ary relationships, respectively.
Question Q2 used a synthetic dataset with 20 papers from 76 authors,
which was created from a larger actual dataset. Question Q3 used a
more complex dataset with 95 papers from 219 authors which was also
created from a larger actual dataset. For both questions, the users were
given all four layouts simultaneously, such as the one shown in Figure 9
for Question Q2. As shown in Figure 8 (b-c), for both questions 95%
of the users favored our visualization over the other techniques.

Overall, our user study suggests that our visualization technique
leads to higher accuracy and less time to finish a task than the other
techniques. In addition, the participants appeared to prefer the polygon-
based visualization over the other layouts.

The last two questions were designed to understand the potential
benefits of including a dual view in the visualization. In our context, a
polygon in the dual view is an author, and the vertices in the polygon
are papers of the author.

Question Q4 consisted of two sub-questions. In the first sub-question,
the participants were given the primal view, while in the second they
were given the dual view. To avoid bias, the users were not notified that
these images were based on the same dataset. As shown in Figure 8
(d), while achieving the same accuracy of 90%, the dual view required
an average of 30 seconds to complete the task while the primal view
required an average of 75 seconds to complete the same task. The
dataset used in this question was the same as that for Question Q3.

Question Q5 consisted of three sub-questions: (1) the primal view
only, (2) the dual view only, and (3) simultaneous display of both the
primal and the dual that were jointly optimized. The dataset for this
question was the same as that for Question Q2. Again, the users were
not notified that these visualizations were based on the same dataset.
As shown in Figure 8 (d), for this question the dual view and the
combined view led to the same accuracy (81%) which is better than the
primal view (67%). With the combined view the participants needed
an average of 40 seconds to finish the task while with the dual view the
participants needed on average 46 seconds.

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

(a) our method (b) EulerView (c) HyperVis (d) Zykov

Fig. 9: Visualization results used for question Q2 in our user study with a dataset that contains 20 hyperedges and 76 vertices.

These results indicate potential benefits of the primal-dual view over
using only the primal view. However, the pandemic-related university
closure placed a number of constraints on our user study, such as the
relatively small number of participants, the lack of control over the
devices used in the survey (and thus the display sizes), and attention
spans of the participants that affected our decision on the length of our
survey to avoid incomplete answers. Consequently, we consider the
findings of our user study preliminary. A more thorough, in-person user
study with a controlled environment, is needed to validate or invalidate
our preliminary findings.

8 CASE STUDIES

We have applied our visualization technique to two applications: an
author collaboration network and an infectious social contact network
[21].

8.1 Authorship Collaboration Network
In Figure 10, we show the largest connected subset of publications for
IEEE Transactions on Pattern Analysis and Machine Intelligence from
2013 to 2015. We make a number of observations.

From the primal view ((a): polygons=papers), we can see that there
is a variety in the number of co-authors in a paper, ranging from two-
author papers to eight-author papers. Combined with the lack of single-
author papers (monogons), this highlights the collaborative nature of
the field. In addition, it seems that the majority of the papers have three
or four authors, indicating that this is the range of the number of people
in a team that balances between productivity and management.

From the dual view ((b): polygons=authors), we observe that there
are many authors with only one publication. We speculate that they
were the students on the team, who after graduation, left the academic
world of publications. On the other hand, polygons adjacent to many
monogons are likely senior researchers and Ph.D. advisors. There are
two highly productive authors (indicated by the grey polygons), who
appear to be well-connected in the network but at a large distance. This
can be perceived as the research areas that the two authors have worked
on are relatively unrelated.

The Erdős number measures the collaborative distance between
a researcher and the Hungarian mathematician Paul Erdős. In the
research community in our dataset, we can similarly define such a
distance between any researcher to the most productive author in the
data. This is achieved by first identifying the largest polygon in the
dual view (b), then finding the corresponding vertex in the primal view,
and finally measuring the polygon distance between this vertex and
the vertex representing the researcher whose Erdős number is being
computed.

Such insight is facilitated by the layouts generated by our automatic
framework, and the primal-dual approach.

8.2 Social Contact Patterns
We also apply our framework to a social contact pattern dataset that
aims to track the spread of infectious diseases. Isella et al. [21] conduct
an experiment by tracking visitors to a science gallery. The visitors
are asked to wear an electronic badge that detects face-to-face contact.
Unfortunately, the published data contains only the time durations of
the contacts but not the physical distances of the contacts.

In the primal view, each visitor is an entity (vertex). A relationship
(polygon) involving N visitors implies that a maximal set of visitors
who, as pairs, have spent more than 40 seconds in a deemed close-
enough distance in this study. We select two days (Sunday, May 10,
2009 and Saturday, June 20, 2009) from this dataset as our test cases,
and visualize the data for both days in Figure 11.

From the primal views ((a) and (c)), we observe that there were more
visitors on May 10 than on June 20. We speculate that this is partially
due to the fact that more visitors visit the galley on Sundays than on
Saturdays. It is also possible that more people choose to be outdoors
in June when it is more likely to be sunny than in May when it can be
rainy.

In addition, a large polygon corresponds to a group of people who
had pairwise close contact. While they could be in close contact at
different places and times, the fact that many visitors do not stay in the
galley for a long period of time indicates that the group either knew
each other (e.g. a family or a group of friends) or corresponds to a time
of the day during which the members of the group visited the galley
simultaneously (though uncoordinated).

The relatively many overlapping polygons are an indication that the
groups of visitors may belong to a larger group. Recall that whether two
visitors are considered in closed contact depends on whether they were
in a close distance for over 40 seconds. Both the distance threshold and
the time threshold (40 seconds) were arbitrarily chosen. Varying the
values of the thresholds and observing their impacts on the data can
lead to additional insight for the application.

Finally, the large polygons in the dual views ((b) and (d)) correspond
to people who had been in contact with the largest number of other
visitors. This can be caused by them being in the galley longer than
other visitors, such as the employees of the gallery or the tour guides
working there. Regardless, should an infectious disease break out,
such people can contribute to the faster spread of the disease. Tracing
their activities before and during the breakout can be more urgent than
tracking the visitors represented by the smaller polygons.

The above observations and hypotheses are enabled by our automatic
layout optimization technique and the primal-dual approach.

9 CONCLUSION AND FUTURE WORK

The main contribution of our work is the introduction of an automatic
polygon layout optimization framework that enhances the quality of the
layout for hypergraphs. At the core of our technique is a set of design
principles for polygon layout that we have identified and the objective
function based on these principles. To our knowledge, it is the first time
that the order of vertices in a polygon is explicitly addressed during
layout generation (the pair swap operation and the polygon intersection
energy). To avoid self-overlaps and flips in the layout, we develop a
procedure called starrization which guarantees that the layout is free of
such artifacts. We also handle datasets with monogons.

Recognizing the duality between entities (vertices) and relationships
(hyperedges), our system enables simultaneous display of both the
primal view and the dual view. To correlate the two layouts (primal
and dual), we enable an automatic joint layout optimization frame-
work based on an augmented energy term that encourages the spatial
correlations between the two views.

Through a user study, we show that the polygon-based layouts gen-

8

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

(a) jointly optimized primal view (b) jointly optimized dual view

Fig. 10: Paper and authorship data from the online database DBLP [26] for publications from 2013 to 2015 in IEEE Transactions on Pattern
Analysis and Machine Intelligence. Each N-ary relationship is either a paper with N authors (left: the primal view) or an author with N papers
(right: the dual view).

erated by our automatic framework compare favorably over a number
of recent subset-based hypergraph approaches for a number of tasks.
In addition, the user study confirms the benefits of the primal-dual
visualization framework and the joint optimization.

There are limitations to both the polygon metaphor and our opti-
mization approach. As our optimization algorithm has a complexity
of ω(N4) where N is the sum of the number of vertices and the num-
ber of hyperedges, it can be difficult to be scaled up to much larger
datasets. We plan to explore hierarchical optimization and visualization

(a) primal view (b) dual view

(c) primal view (d) dual view

Fig. 11: The visualization of a social contact pattern data [21] for May
10, 2009 (top) and June 20, 2009 (bottom). The left images show the
primal views and the right images show the dual views. Notice the
difference in the patterns of the two days (top vs. bottom).

to alleviate this problem. In addition, we will investigate the use of the
GPUs as the evaluation of the objective function is highly paralleliz-
able. Another issue with our optimization is that our polygon area (PA)
energy and polygon separation (PS) energy are formulated assuming
the underlying polygon has a low polygon regularity (PR) energy, i.e.
being nearly regular. Our choice of such formulations is motivated
by a number of factors such as reducing the computational cost. For
example, finding the exact distance between two polygons not sharing
a vertex is a classical computational geometry problem. Employing a
formulation that requires exact computation can further increase the
computational complexity of our optimization framework. However,
when the polygons are not close to being regular, our current formu-
lations of the PA and PS energies are no longer as effective. We will
investigate other formulations that are less dependent on the regularity
of the polygons.

The polygon metaphor also has its limitations. It performs best
when the underlying hypergraph has approximately a tree-like structure.
When there are an excessive number of polygons adjacent to a vertex,
overlaps among these polygons are unavoidable. Similarly, a cluster
of polygons can have unavoidable overlaps (e.g. Figure 11). When
these types of overlaps occur, which can become more prominent as
the tree-like structure in the data disappears, we observe that the effec-
tiveness of the polygon metaphor decreases. Tasks such as recognizing
a hyperedge and its cardinality, deciding whether a vertex belongs to a
hyperedge, and perceiving whether two hyperedges intersect become
more difficult. We plan to explore a multi-scale representation of hy-
pergraphs to address this challenge. In addition, we plan to investigate
the adaptation of graph sparification [24] to hypergraph sparcification,
in which less important data is filtered out from the visualization.

For visualization, we will explore better layouts to reduce the amount
of unused space. Incorporating label placement for vertices and hyper-
edges in both the primal view and the dual view can strengthen the link
between the two views. This is a potentially fruitful research direction.
Addressing the uncertainty in the data is another future research avenue.

ACKNOWLEDGMENTS

The authors wish to thank our anonymous reviewers for their construc-
tive feedback. We appreciate the help from Avery Stauber during video
production. We also would like to thank Dr. Markus Wallinger and
Dr. Danial Archambault for sharing the codes of EulerView. This work
was supported in part by the NSF award (# 1619383).

REFERENCES

[1] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial sets: Inter-
active visual analysis of large overlapping sets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2496–2505, 2013. doi: 10.
1109/TVCG.2013.184

[2] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. The state-of-the-art of set visualization. Comput. Graph.
Forum, 35(1):234260, Feb. 2016. doi: 10.1111/cgf.12722

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

[3] N. A. Arafat and S. Bressan. Hypergraph drawing by force-directed
placement. In Database and Expert Systems Applications, pp. 387–394.
Springer International Publishing, Cham, 2017.

[4] D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable
exploration of graph hierarchy space. IEEE Transactions on Visualization
and Computer Graphics, 14(4):900–913, 2008.

[5] K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg. Kelp
diagrams: Point set membership visualization. Computer Graphics Forum,
31(3pt1):875–884, 2012. doi: 10.1111/j.1467-8659.2012.03080.x

[6] U. Dogrusoz, M. E. Belviranli, and A. Dilek. Cise: A circular spring
embedder layout algorithm. IEEE Transactions on Visualization and
Computer Graphics, 19:953–966, 2013.

[7] U. Doğrusöz, B. Madden, and P. Madden. Circular layout in the graph
layout toolkit. In International Symposium on Graph Drawing, pp. 92–100.
Springer, 1996.

[8] M. Drk, N. Henry Riche, G. Ramos, and S. Dumais. Pivotpaths: Strolling
through faceted information spaces. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2709–2718, 2012. doi: 10.1109/TVCG.
2012.252

[9] C. Dunne and B. Shneiderman. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 3247–3256. ACM, 2013.

[10] W. Evans, P. Rzażewski, N. Saeedi, C.-S. Shin, and A. Wolff. Representing
graphs and hypergraphs by touching polygons in 3d. In D. Archambault
and C. D. Tóth, eds., Graph Drawing and Network Visualization, pp.
18–32. Springer International Publishing, Cham, 2019.

[11] J. Fagnan, O. Zaane, and R. Goebel. Visualizing community centric
network layouts. In 2012 16th International Conference on Information
Visualisation, pp. 321–330, 2012. doi: 10.1109/IV.2012.61

[12] F. Frank, M. Kaufmann, S. Kobourov, T. Mchedlidze, S. Pupyrev, T. Ueck-
erdt, and A. Wolff. Using the metro-map metaphor for drawing hyper-
graphs. In T. Bureš, R. Dondi, J. Gamper, G. Guerrini, T. Jurdziński,
C. Pahl, F. Sikora, and P. W. Wong, eds., SOFSEM 2021: Theory and
Practice of Computer Science, pp. 361–372. Springer International Pub-
lishing, Cham, 2021.

[13] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11):1129–1164, 1991.

[14] M. E. Gage. Curve shortening makes convex curves circular. Inventiones
mathematicae, 76(2):357–364, 1984.

[15] M. R. Garey and D. S. Johnson. Crossing number is np-complete. SIAM
Journal on Algebraic Discrete Methods, 4(3):312–316, 1983. doi: 10.
1137/0604033

[16] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional graph
layout techniques for information visualisation. Information Visualization,
12(3-4):324–357, 2013.

[17] M. Harrower and C. A. Brewer. Colorbrewer.org: an online tool for
selecting colour schemes for maps. The Cartographic Journal, 40(1):27–
37, 2003.

[18] A. Hatcher. Algebriac Topology. Cambridge University Press, Cambridge,
MA, USA, 2002.

[19] R. J. Hogan. Fast reverse-mode automatic differentiation using expression
templates in C++. ACM Transactions on Mathematical Software (TOMS),
40(4):26, 2014.

[20] Y. Hu. Efficient, high-quality force-directed graph drawing. Mathematica
Journal, 10(1):37–71, 2005.

[21] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck. What’s in a crowd? analysis of face-to-face behavioral networks.
Journal of Theoretical Biology, 271(1):166–180, 2011.

[22] B. Jacobsen, M. Wallinger, S. Kobourov, and M. Nllenburg. Metrosets:
Visualizing sets as metro maps. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1257–1267, 2021. doi: 10.1109/TVCG.2020.
3030475

[23] B. Kim, B. Lee, and J. Seo. Visualizing set concordance with permutation
matrices and fan diagrams. Interacting with Computers, 19(5-6):630–643,
2007. doi: 10.1016/j.intcom.2007.05.004

[24] M. Lai, J. Xie, and Z. Xu. Graph sparsification by universal greedy
algorithms. CoRR, abs/2007.07161, 2020.

[25] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. Upset:
Visualization of intersecting sets. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1983–1992, 2014. doi: 10.1109/TVCG.2014.
2346248

[26] M. Ley. DBLP Computer Science Bibliography, 2005.

[27] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1):503–528, 1989.

[28] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang. On
centroidal Voronoi tessellationenergy smoothness and fast computation.
ACM Transactions on Graphics (ToG), 28(4):101, 2009.

[29] L. Micallef and P. Rodgers. eulerAPE: Drawing area-proportional 3-
Venn diagrams using ellipses. PloS One, 9:e101717, 07 2014. doi: 10.
1371/journal.pone.0101717

[30] J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed
sufficient decrease. ACM Transactions on Mathematical Software (TOMS),
20(3):286–307, 1994.

[31] X. Ouvrard. Hypergraphs: an introduction and review. arXiv preprint
arXiv:2002.05014, 2020.

[32] B. Qu, P. Kumar, E. Zhang, P. Jaiswal, L. Cooper, J. Elser, and Y. Zhang.
Interactive design and visualization of n-ary relationships. In SIGGRAPH
Asia 2017 Symposium on Visualization, p. 15. ACM, 2017.

[33] I. Reinbacher, M. Benkert, M. van Kreveld, J. S. B. Mitchell, and A. Wolff.
Delineating boundaries for imprecise regions. In G. S. Brodal and
S. Leonardi, eds., Algorithms – ESA 2005, pp. 143–154. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[34] N. H. Riche and T. Dwyer. Untangling Euler diagrams. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1090–1099, 2010.

[35] P. Rodgers, L. Zhang, and A. Fish. General Euler diagram generation.
In Proceedings of the 5th International Conference on Diagrammatic
Representation and Inference, Diagrams ’08, p. 1327. Springer-Verlag,
Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-87730-1 6

[36] R. Sadana, T. Major, A. Dove, and J. Stasko. Onset: A visualization tech-
nique for large-scale binary set data. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1993–2002, 2014. doi: 10.1109/TVCG.
2014.2346249

[37] R. Santamarı́a and R. Therón. Visualization of Intersecting Groups
Based on Hypergraphs. IEICE Transactions on Information and Systems,
93(7):1957–1964, Jan. 2010. doi: 10.1587/transinf.E93.D.1957

[38] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation
of overlapping sets. In Computer Graphics Forum, vol. 28, pp. 967–974.
Wiley Online Library, 2009.

[39] G. Stapleton, J. Flower, P. Rodgers, and J. Howse. Automatically drawing
Euler diagrams with circles. J. Vis. Lang. Comput., 23(3):163193, June
2012. doi: 10.1016/j.jvlc.2012.02.001

[40] J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: Supporting investigative
analysis through interactive visualization. In 2007 IEEE Symposium on
Visual Analytics Science and Technology, pp. 131–138, 2007. doi: 10.
1109/VAST.2007.4389006

[41] M. Sun, D. Koop, J. Zhao, C. North, and N. Ramakrishnan. Interactive
bicluster aggregation in bipartite graphs. In 2019 IEEE Visualization Con-
ference (VIS), pp. 246–250, 2019. doi: 10.1109/VISUAL.2019.8933546

[42] M. Sun, P. Mi, C. North, and N. Ramakrishnan. Biset: Semantic edge
bundling with biclusters for sensemaking. IEEE Transactions on Visualiza-
tion and Computer Graphics, 22(1):310–319, 2016. doi: 10.1109/TVCG.
2015.2467813

[43] J. Van Wijk and H. Van de Wetering. Cushion treemaps: visualization
of hierarchical information. In Proceedings 1999 IEEE Symposium on
Information Visualization (InfoVis’99), pp. 73–78, 1999. doi: 10.1109/
INFVIS.1999.801860

[44] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing group structures in
graphs: A survey. In Computer Graphics Forum, vol. 36, pp. 201–225.
Wiley Online Library, 2017.

[45] C. Vehlow, T. Reinhardt, and D. Weiskopf. Visualizing fuzzy overlap-
ping communities in networks. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2486–2495, 2013.

[46] H.-Y. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and M. Nllenburg.
A survey on transit map layout from design, machine, and human perspec-
tives. Computer Graphics Forum, 39(3):619–646, 2020. doi: 10.1111/cgf.
14030

[47] J. Zhao, M. Sun, F. Chen, and P. Chiu. Bidots: Visual exploration of
weighted biclusters. IEEE Transactions on Visualization and Computer
Graphics, 24(1):195–204, 2018. doi: 10.1109/TVCG.2017.2744458

[48] A. A. Zykov. Hypergraphs. Russian Mathematical Surveys, 29(6):89,
1974.

10

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

A INITIAL LAYOUT AND ITS IMPACT ON FINAL LAYOUT

Different initial layouts of the same dataset can lead to different final
optimized layouts: force-directed [20] (Figure 12), circular (Figure 13),
and random (Figure 14). Our system provides all three initial layout
schemes for the user. The results in the paper were based on the force-
directed layout similar to Figure 12.

(a) (b)

Fig. 12: The optimized layout for a dataset (b) given an initial lay-
out where the vertices are placed based on the force-directed layout
algorithm of Hu [20] (a).

(a) (b)

Fig. 13: The optimized layout for a dataset (b) given an initial layout
where the vertices are placed on a circle (a).

(a) (b)

Fig. 14: The optimized layout for a dataset (b) given an initial layout
where the vertices are randomly placed (a).

B TIME COMPARISON BETWEEN MANUAL LAYOUT DESIGN
AND AUTOMATIC OPTIMIZATION

Table 1 compares the time of manually designing a polygon layout to
that of using our automatic optimization-based algorithm. Note that for
all three test datasets, the automatic algorithm is about three magnitudes
faster than manual design. Both the manual design and the automatic
algorithm start with the same initial layout, which, for the three test
datasets, are based on the force-directed method [20].

Data No. No. Design time Optimization
Vertices Hyperedges (seconds) time (seconds)

No. 1 81 22 453 0.670
No. 2 72 22 304 0.737
No. 3 43 14 194 0.268

Table 1: This table compares the times of manually designing a polygon
layout for three hypergraphs to those of using our automatic optimiza-
tion framework.

11

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

	Introduction
	Related Work
	Data Representation
	Automatic CW-Complex Layout Optimization
	CW-Complex Layout Principles
	Objective Function
	Polygon Layout Optimization

	Dual-Views and Joint Optimization
	Visualization and Functionalities
	Performance and Evaluation
	Case Studies
	Authorship Collaboration Network
	Social Contact Patterns

	Conclusion and Future Work
	Initial Layout and Its Impact on Final Layout
	Time Comparison between Manual Layout Design and Automatic Optimization

