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Fig. 1: Mode surfaces of a stress tensor field for a block under compression. When the mode value µ is close to ±1 (a), the mode
surface resembles a vascular structure that contains a core, the degenerate curves (yellow). On the other hand, when µ is close 0
(c), the mode surface converges onto the neutral surfaces (chartreuse). By observing the change in mode surfaces’ geometry and
topology ((a)-(c)), we gain insight into the interaction between degenerate curves and neutral surfaces, the two constituents of tensor
field topology. In addition, some mode surfaces can contain interesting features not present in degenerate curves and neutral surfaces,
such as the bottom layer with a hole (b). Finally, the change in mode surfaces’ topology when mode values change, such as the
contraction of the mode surface from (b) to a vascular structure in (a) can also provide important insight into the underlying physics.

Abstract—Mode surfaces are the generalization of degenerate curves and neutral surfaces, which constitute 3D symmetric tensor field
topology. Efficient analysis and visualization of mode surfaces can provide additional insight into not only degenerate curves and neutral
surfaces, but also how these features transition into each other. Moreover, the geometry and topology of mode surfaces can help
domain scientists better understand the tensor fields in their applications. Existing mode surface extraction methods can miss features
in the surfaces. Moreover, the mode surfaces extracted from neighboring cells have gaps, which make their subsequent analysis
difficult. In this paper, we provide novel analysis on the topological structures of mode surfaces, including a common parameterization
of all mode surfaces of a tensor field using 2D asymmetric tensors. This allows us to not only better understand the structures in mode
surfaces and their interactions with degenerate curves and neutral surfaces, but also develop an efficient algorithm to seamlessly
extract mode surfaces, including neutral surfaces. The seamless mode surfaces enable efficient analysis of their geometric structures,
such as the principal curvature directions. We apply our analysis and visualization to a number of solid mechanics data sets.

Index Terms—Tensor field visualization, tensor field topology, traceless tensors, degenerate curve extraction, neutral surface extraction,
mode surface extraction.
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Symmetric tensor fields have a wide range of applications in science, en-
gineering, and medical domains. The diffusion tensor field analysis in
medical imaging plays a key role in diagnosing and treatment planning
for brain cancers. The stress and strain tensors in continuum mechanics
enable the predictions of structural failures. Topology-driven analy-
sis and visualization of 3D symmetric tensor fields have made much
progress in recent years, of which the focus is on high-quality extraction
and visualization of the tensor field topology such as degenerate curves
(where the tensors have repeating eigenvalues) and neutral surfaces
(where the major, medium, and minor eigenvalues of the tensors form
an arithmetic sequence). On the other hand, degenerate curves and
neutral surfaces are often treated as unrelated objects and interpreted
separately.

In fact, both are a level set of the mode function of the tensor field [6],
which ranges from −1 to 1, with neutral surfaces being the zeroth
level set of this function and the degenerate curves being the ±1 level



set. In solid mechanics [6], a mode −1 tensor corresponds to uniaxial
compression and a mode 1 tensor corresponds to uniaxial extension. In
contrast, a mode 0 tensor corresponds to pure shear. At other mode
values, we observe biaxial extension and compression.

Degenerate curves and neutral surfaces transition into each other, and
understanding their interaction can provide more insight than interpret-
ing them separately. Such an interaction can be better understood and
visualized through level set surfaces whose iso-values are between 0
and ±1. These surfaces are referred to as mode surfaces such as the
gold-colored surfaces shown in Figure 1. Note how mode surfaces with
mode values close to ±1 can form vascular structures around the de-
generate curves (Figure 1 (a): yellow curves). On the other hand, mode
surfaces of values close to 0 converge onto neutral surfaces (Figure 1
(c): chartreuse surfaces). We refer the readers to our accompanying
video for animations of the mode surfaces for this data set and other
examples in the paper.

In addition, mode surfaces themselves can also provide an interesting
insight into the underlying physics. For example, in Figure 1 (b),
the mode surface contains a sheet with a hole at the bottom of the
volume. Note that such a feature is not present in degenerate curves
and neutral surfaces. Therefore, it is important to study not only tensor
field topology but also other feature surfaces such as mode surfaces.

The changes in the geometry and topology of mode surfaces as mode
values change can also be meaningful of the underlying tensor field. We
observe the splitting of the bottom sheet in the mode surface (Figure 1
(b)) into four disconnected components (Figure 1 (c)) as well as the
thinning of the mode surface (Figure 1 (b)) into a vascular structure
(Figure 1 (a)).

Finally, it is often useful to not only visualize mode surfaces but also
their differential properties such as surface normal and principal curva-
ture directions. For example, in Figure 2 (b), we visualize the principal
curvature directions using a texture-based method [28]. The normal
to a mode surface provides the direction in which the mode changes
the most, e.g. from uniaxial extension to uniaxial compression and
vice versa. As isosurfaces of the tensor mode function, the principal
curvature directions of the mode surfaces are determined by the Hessian
of the mode function [17] and can provide information in the ridge and
valley lines in the surfaces.

Palacios et al. [27] extract mode surfaces using the A-patches
method [21], which requires iterative subdivisions of tetrahedra in
the mesh. Given a tetrahedron, the iterative subdivision process is
not guaranteed to converge. Consequently, a maximum level of sub-
division is used to stop the subdivision if the mode surface inside the
tetrahedron cannot be completely extracted by the already performed
subdivisions. This leads to holes in the extracted mode surface, which
can be misinterpreted as the mode surface intersecting the domain
boundary (Figure 3 (a) and (c)).

In addition, because the subdivision process is performed on each
tetrahedron in the mesh separately, the intersection of the mode surfaces
from adjacent tetrahedra (which are curves) are usually not consistent
(different number of vertices on the shared face). This leads to gaps in
the mode surfaces between adjacent tetrahedra. Instead of a connected
mesh, the mode surface generated by Palacios et al. [27] is essentially
a triangle soup. While such gaps are not necessarily an issue when
visualizing the mode surfaces, they present challenges in computing the
normal and principal curvature directions on mode surfaces (as shown
in Figure 2 (a)).

Moreover, the subdivision process incurs much computational cost,
which can take seconds or even minutes to extract a single mode sur-
face, depending on the time-quality tradeoff parameter (the maximum
number of subdivisions).

(a) A-patches Method [27]

(b) Our method

Fig. 2: The holes and gaps in mode surfaces extracted using the A-
patches method [27] lead to a mesh with seams, impeding the computa-
tion of important surface properties such as normal and curvature (top:
LIC texture lacks clarity in showing the major principal direction in the
mode surface). Our method generates seamless meshes, which lead to
robust curvature computation (bottom).

In this paper, we address the aforementioned challenges by providing a
parameterization for all mode surfaces given a 3D linear tensor field.
This common parameterization allows us to extract mode surfaces at
any accuracy without the need for mesh subdivision. This leads to
fewer missing pieces in the extracted surfaces than from the A-patches
method. Furthermore, our algorithm extracts mode surfaces inside each
face in the mesh, which are then used to find mode surfaces inside
each tetrahedron. This makes it straightforward to stitch mode surfaces
from adjacent tetrahedra without gaps, resulting in a seamless mode
surface on which differential properties can be computed and visualized
(Figure 2 (b)). Moreover, a mode surface can be extracted under five
seconds for our simulation data sets.

Our pipeline also applies to the extraction of neutral surfaces, which
is a non-orientable surface [2] characterized by a degree-three poly-
nomial [32]. To our knowledge, the algorithm and the pipeline we
develop for mode and neutral surface extraction, in conjunction with
the degenerate curve extraction method of Roy et al. [32], is the first
unified framework for all isosurfaces of the mode function, including
neutral surfaces (mode 0) and degenerate curves (mode ±1).



(a) The A-patches method [27] (b) Our method

(c) The method of [32] (d) Our method

Fig. 3: Existing mode surface extraction methods such as [27] (top-left)
can have holes due to non-convergence in the extraction process. In
addition, these methods [27, 32] can have gaps between mode surfaces
extracted from different tets (top-left and bottom-left). These holes
and gaps can not only mislead interpretation but also make it difficult
to compute differential properties of the mode surfaces such as their
curvature tensors. Our method addresses these challenges with a unified
framework in which mode surfaces (including neutral surfaces) can
be extracted more accurately, faster, and in a seamless fashion (right
column).

To demonstrate the utility of our approach, we apply our tensor field
analysis and visualization to solid mechanics applications.

2 RELATED WORK

Tensor field visualization has advanced much in the last decades [4,19].

Delmarcelle and Hesselink [9] introduce the notion of topology for
2D symmetric tensor fields, which consists of degenerate points. The
topological features of 3D symmetric tensor fields are first studied by
Hesselink et al. [15]. Zheng and Pang [37] point out that degenerate
points form curves under structurally stable conditions, i.e. the structure
persists under arbitrarily small perturbations [7]. Several methods have
been proposed to extract degenerate curves [27, 32, 35, 39]. Palacios et
al. [26] introduce editing operations for degenerate curves, such as de-
generate curve removal, degenerate curve deformation, and degenerate
curve reconnection.

Besides feature curves, another type of topological features is surfaces.
Zobel and Scheuermann [40] introduce the notion of extremal sur-
faces for 3D symmetric tensor fields. Raith et al. [30] extract fiber
surfaces of tensor fields by linearly interpolating tensor invariants in
each tetrahedron. Palacios et al. [27] introduce the notion of neutral
surfaces.

Extracting implicit surfaces is a well-researched area [8]. The most
popular technique, Marching Cubes [20] and its variants, focus on
trilinear functions that are degree-three polynomials, while mode sur-
faces are of degree-six. Using surface extraction methods designed
for a lower-degree polynomial, even with a guarantee for topologi-
cal correctness [13, 24, 31], can still miss important topological and
geometric features of isosurfaces corresponding to a higher-degree
polynomial. Implicit surface extraction methods that can handle more

general functions with topological guarantees [3, 25, 34] usually re-
quire C2 functions. Since the mode function in our case is a piecewise
degree-six polynomial and C0 at the cell boundaries, it is not clear how
to adapt these techniques to the mode function.

The A-patches method [21] is a technique to extract algebraic surfaces,
which is adapted by Palacios et al. [27] to extract mode surfaces. How-
ever, to our knowledge, the extracted surfaces can contain seams at the
faces of the mesh.

Roy et al. [32] provide algorithms to extract degenerate curves and
neutral surfaces from linear tensor fields based on parameterizations
of features in the field by their eigenvectors (medium eigenvectors
for neutral surfaces and dominant eigenvectors for degenerate curves).
These parameterizations lead to a more accurate extraction of degener-
ate curves and neutral surfaces than previous techniques based on the
A-patches algorithm [27]. However, while their extraction of degener-
ate curves is seamless, their extraction of neutral surfaces is not. In this
paper, we provide a unified parameterization of all mode surfaces of
a linear tensor field, which enables a unified pipeline for the seamless
extraction of mode surfaces including neutral surfaces and degenerate
curves.

Our analysis makes use results from 2D asymmetric tensor fields.
Zheng and Pang [38] introduce the notion of real domains and complex
domains for 2D asymmetric tensor fields. Zhang et al. [36] provide
topological analysis of asymmetric tensor fields on surfaces, which
Khan et al. [18] extend to a multi-scale framework. Chen et al. [29]
visualize asymmetric tensor fields on surfaces with a hybrid approach:
glyphs for the complex domain and hyperstreamlines for the real do-
main.

3 TENSOR BACKGROUND

In this section, we review the relevant math background on tensors and
properties of 3D linear symmetric tensor fields.

3.1 Tensor Basics

An n-dimensional tensor T can be expressed as an n×n matrix under a
given orthonormal basis.

The trace of a tensor T = (Ti j) is the sum of its diagonal elements.
When the trace is zero, the tensor is referred to as being traceless.
A tensor T can be uniquely decomposed as the sum of the tensor
D = traceT

n I (a multiple of the identity matrix) and a traceless tensor
A = T −D (referred to as the deviator of T ). Note that T and A have
the same set of eigenvectors. The set of all n×n tensors form a linear
space, on which the following inner product of two tensors R and S can
be introduced [33]:

〈R,S〉=
n

∑
i=1

n

∑
j=1

Ri jSi j = trace(ST R). (1)

.

With this product, one can define the magnitude of a tensor T as
||T || =

√
〈T,T 〉. Another important quantity of a given tensor is its

determinant |T |, which is the product of its eigenvalues.

A tensor T is symmetric if it is equal to its transpose. Otherwise, it
is asymmetric. The eigenvalues of a symmetric tensor are guaranteed
to be real-valued, while the eigenvalues of an asymmetric tensor can
be either real-valued or complex-valued. Furthermore, the eigenvec-
tors belonging to different eigenvalues of a symmetric tensor form
an orthonormal basis. For asymmetric tensors, even when the eigen-



values are real-valued, their respective eigenvectors are not mutually
perpendicular.

Given our focus on 3D symmetric tensors and occasional mention of 2D
asymmetric tensors, in the remainder of the paper we will drop the word
“symmetric” for symmetric tensors and keep the word “asymmetric”
for asymmetric tensors. Moreover, we only consider 3D traceless
(symmetric) tensors and therefore will also omit the word “traceless”
for 3D tensors. In contrast, when discussing 2D asymmetric tensors,
we do not assume that they are traceless.

3.2 3D Tensors and Modes

A 3× 3 tensor T has three eigenvalues λ1 ≥ λ2 ≥ λ3, which are re-
ferred to respectively as its major eigenvalue, medium eigenvalue, and
minor eigenvalue. Eigenvectors corresponding to T ’s major eigenvalue
are referred to its major eigenvectors. We can define T ’s medium
eigenvectors and minor eigenvectors in a similar fashion.

T is degenerate if it has repeating eigenvalues. Under structurally sta-
ble conditions, a degenerate tensor T has two eigenvalues being the
same (referred to as the repeating eigenvalue). The third eigenvalue
is the dominant eigenvalue. Furthermore, if the dominant eigenvalue
is larger than the repeating eigenvalue, T is referred to as being linear
degenerate. If the dominant eigenvalue is smaller than the repeating
eigenvalue, T is referred to as being planar degenerate. The eigenvec-
tors corresponding to the dominant eigennvalue are referred to as the
dominant eigenvectors.

A 3× 3 tensor T is neutral if its medium eigenvalue is the average
of its major and minor eigenvalues. The dominant eigenvalue and
eigenvectors are not well-defined for neutral tensors.

The mode of a 3D (traceless, symmetric) tensor T is µ(T ) = 3
√

6 det(T )
‖T‖3 ,

with a range of [−1,1]. As special instances, neutral tensors are mode
0 tensors, while linear degenerate tensors and planar degenerate tensors
correspond to mode 1 and mode −1 tensors, respectively. The eigenval-
ues of a tensor with a unit tensor magnitude can be expressed in terms
of its mode µ as follows [6, 16, 23]:

λ1 =

√
2
3

sin(
1
3

arcsin(−µ)+
2π

3
),

λ2 =

√
2
3

sin(
1
3

arcsin(−µ)),

λ3 =

√
2
3

sin(
1
3

arcsin(−µ)− 2π

3
). (2)

A 3D tensor field is a continuous tensor-valued function. A degenerate
point and a neutral point are where the tensor values are degenerate and
neutral, respectively. Under structurally stable conditions, degenerate
points form curves (degenerate curves) [37], and neutral points form
surfaces (neutral surfaces) [27]. In general, the µ level set of the mode
function is a surface when −1 < µ < 1. Such a level set is referred to
as a mode-µ surface [27]. Note that both degenerate curves and neutral
surfaces are special level sets of the mode µ .

3.3 3D Linear Tensor Fields

We focus on 3D linear tensor fields, which can be written in the form
of T (x,y,z) = T0 + xTx + yTy + zTz where T0, Tx, Ty, and Tz are linearly
independent 3D tensors. Let U be the set of 3D (traceless, symmetric)
tensors, which is a five-dimensional space. Under structurally stable
conditions, there exists a 3D tensor T that satisfies the following:

〈T ,T0〉= 〈T ,Tx〉= 〈T ,Ty〉= 〈T ,Tz〉= 0,

〈T ,T 〉= 1,
det(T )≤ 0. (3)

Note that T plays an important role in the behavior of the tensor
field [32]. We refer to T as the characteristic tensor of the linear
tensor field.

The set of degenerate points of a 3D linear tensor field can be parameter-
ized by a topological circle [32]. That is, the union of the set of mode 1
points and mode −1 points is homeomorphic to the circle. The neutral
surface of a 3D linear tensor field can be parameterized [32] by RP2

(referred to as the medium eigenvector manifold) except for two lines,
each of which corresponds to a single point in the medium eigenvector
manifold (referred to as a singularity in the parameterization). Due
to the existence of the two singularities, the set of neutral points of a
3D linear tensor field is homeomorphic to RP2 attached with a handle
(thus non-orientable) [2].

In this paper, we provide analysis on the topology of mode surfaces as
well as efficient algorithms to extract them.

4 MODE SURFACES ANALYSIS

Given a number µ ∈ (−1,0)
⋃
(0,1), we wish to seamlessly extract

the mode µ surface from a piecewise linear tensor field defined on a
tetrahedral mesh. To do so, we provide a unified framework in the same
spirit of the degenerate curve extraction method of Roy et al. [32]. That
is, we first extract mode curves on each triangular face in the mesh.
Next, we extend the mode curves from the four faces of each tet to
extract the mode surface inside the tet. Finally, we stitch the mode
surface from adjacent tets across their common faces to generate a
seamless mode surface in the whole mesh.

This requires the ability to extract mode surfaces inside a tet at high-
quality. Recall that inside each tet of the tetrahedral mesh, the tensor
field is linear. In the remainder of this section, we will describe our
novel analysis of mode surfaces for 3D linear tensor fields, which
leads to a parameterization of such surfaces that enables high-quality
extraction. We will state the results of our analysis in the paper and
provide their proofs in Appendix A.

Similar to the case of degenerate curves [32], we will consider the set of
mode ±µ points together for our mode surface analysis and extraction.
These points satisfy the following degree-six equation:

54(det(T ))2−µ(T )2‖T‖6 = 0, (4)

and we refer to the collection of such points as the generalized mode µ

surface. As in the case of neutral surfaces, we show that a generalized
mode µ surface can also be parameterized by its medium eigenvectors
(Theorem 1 in Appendix A). This parameterization is based on the
following 2D asymmetric tensor field defined on the unit sphere:

A(v2) = R θ

2 +
π

4
T ′(v2)R θ

2−
π

4
(5)

in which v2 is a unit vector, T ′(v2) is the projection of T onto the
plane whose normal is v2, θ = arcsin(

√
3tan( 1

3 arcsin(µ))), and Rφ =(
cosφ −sinφ

sinφ cosφ

)
.



Figure 4 illustrates the asymmetric tensor field A with an example 3D
linear tensor field created manually. There are four types of regions
on the aforementioned sphere (the medium eigenvector manifold): (1)
grey, (2) cyan, (3) magenta, and (4) blue.

(a) Medium eigenvector manifold (b) Generalized mode µ surfaces

Fig. 4: A generalized mode µ surface (right) can be parameterized by
the medium eigenvector manifold (left). Each pair of antipodal points in
the blue region of the medium eigenvector manifold (left: red dot) gives
rise to two points in the generalized mode µ surfaces (right: red dots),
one with a positive mode value (right: the red dot on the teal surface)
and one with a negative mode value (right: the red dot on the gold
surface). The dominant eigenvector directions at these points (right:
shown with LIC textures in the planes) are given by the eigenvectors of
an asymmetric tensor field in the medium eigenvector manifold (left:
LIC texture directions). Points in the cyan and magenta regions in the
medium eigenvector manifold correspond to two positive-mode points
and two negative-mode points, respectively. Points in the grey region
do not correspond to any point in the generalized mode µ surface.

The grey region is the complex domain of the asymmetric tensor field
A(v2), i.e. with complex eigenvalues. Unit vectors in this region cannot
appear as the medium eigenvector of any tensor in the 3D linear tensor
field. That is, there are no points in the generalized mode µ surface
that correspond to these unit vectors. Note that if a unit vector v is in
the complex domain, so is −v. Therefore, the complex domain of the
asymmetric field respects the antipodal symmetry.

The cyan, magenta, and blue regions together form the real domain
of the asymmetric tensor field. Each pair of antipodal points in the
medium eigenvector manifold inside these regions correspond to two
points in the generalized mode µ surface. If both points have the
positive mode µ , we color the original pair in the sphere with cyan. If
both points have the mode −µ , we color the pair in the sphere magenta.
If one point has the mode µ and other −µ , we color the corresponding
pair in the sphere blue.

Note that the major and minor eigenvectors of the asymmetric tensor
field A give rise to the dominant eigenvectors of the 3D tensor field
at the corresponding points in the generalized mode µ surface. An
example is shown in Figure 4. In (a), a unit vector v2 in the sphere
(highlighted by a red dot) corresponds to two points in the generalized
mode µ surface (b), each of which also highlighted by a red dot. The
point in the teal surface (b) has a positive mode while the point in the
gold surface has a negative mode. The planes normal to the medium
eigenvectors are shown for both points (b). Notice that the two planes
are parallel, i.e. the medium eigenvectors are the same for both points,
which correspond to the vector in the medium eigenvector manifold
(the red dot in (a)). The dominant eigenvector directions at the points
in the generalized mode µ surface ((b): the LIC textures in the two
planes) together match the major and minor eigenvector directions of
A(v2) ((a): the LIC directions at the red dot).

Due to the symmetry in the tensor field, −v2 corresponds to the same
two points in the generalized mode µ surface (Theorem 1 in Ap-

pendix A). However, the minor eigenvector of A(v2) becomes the major
eigenvector of A(−v2) and the major eigenvector of A(v2) becomes the
minor eigenvector of A(−v2). To make our parameterization easier for
subsequent processing, we choose the unit vector from v2 and −v2 so
that its major eigenvector gives rise to the dominant eigenvector of the
corresponding point in the generalized mode µ surface. This scheme
removes the ambiguity in our parameterization by converting the two-
to-two correspondence (±v2 to the two points in the generalized mode
µ surface) to a one-to-one correspondence.

Finally, points on the boundary between the real domain and com-
plex domain (complex domain boundary) have one real eigenvalue of
multiplicity of two. The complex domain boundary also satisfies the
antipodal symmetry. That is, if a vector v2 is in the complex domain
boundary, so is −v2. Moreover, v2 and −v2 correspond to exactly one
point in the generalized mode µ surface.

Given a 3D linear tensor field, all of its generalized mode µ surface can
be parameterized by the same sphere. The following equation charac-
terizes the complex domain boundary (Theorem 2 in Appendix A):

1
2
− vT

2 T 2v2 +
1
4

cos2
θ(vT

2 T v2)
2 = 0 (6)

where θ = arcsin(
√

3tan( 1
3 arcsin(µ))) is the same as that in Equa-

tion 5. We illustrate the changes in the geometry and topology of
generalized mode µ surfaces with an example tensor field in Figure 5.
Three generalized mode µ surfaces (teal and gold surfaces) are shown
in (a), (b), and (c), respectively. Their corresponding eigenvector man-
ifolds are also shown (the three spheres). In addition, we show the
degenerate curves (the yellow and green curves in (a)) and the neutral
surfaces (the chartreuse surface in (c)).

When µ = 1, the mode surface is essentially the degenerate curves. The
complex domain in the corresponding medium eigenvector manifold
(not shown) consists of two connected components, satisfying the
antipodal symmetry. When µ decreases, the complex domain shrinks
in size (a). At this stage, the complex domain boundary still consists
of two curves satisfying the antipodal symmetry (one is visible in (a)).
Since each pair of antipodal points on the complex domain boundary
corresponds to exactly one point in the generalized mode µ surface,
the latter can be topologically constructed by removing the complex
domains from the sphere (punching two holes) and gluing the surface
along the complex domain boundary based on the antipodal symmetry.
This results in a torus.

Note that as µ decreases, the complex domain grows smaller (Corol-

lary 3 in Appendix A). When µ reaches
√

1−µ
2 where µ is the mode

of T , the complex domain boundary touches itself (Figure 5 (b)). The
generalized mode µ surface at this point is a non-manifold.

After this, the complex domain continues to shrink and now has four
connected components. Performing the same topological surgery (re-
moving the complex domains and gluing along the complex domain
boundary) results in a double-torus, i.e. a surface with two handles
(Figure 5 (c)).

Finally, when µ = 0, the complex domain disappears, and the complex
domain boundary degenerates into two pairs of antipodal points in the
medium eigenvector manifold. They are precisely the singularities in
the parameterization [32], each of which corresponds to a straight line
in the neutral surface. Using the eigenvectors of T as the coordinate
system for the medium eigenvector manifold, we have the singularities

being
(
±
√

λ 1−λ 2

λ 1−λ 3
0 ±

√
λ 2−λ 3

λ 1−λ 3

)
.

We refer the reader to Theorem 5 in Appendix A for the proof of the



Fig. 5: Given a 3D linear tensor field, the positive mode surfaces (teal) converge to linear degenerate curves (green) and the negative mode
surfaces (gold) converge to planar degenerate curves (yellow) when µ approaches ±1 (a). In this case, the complex domain consists of two
loops respecting the antipodal symmetry of the sphere. Together, the generalized mode µ surface has a topology of a torus. In contrast, when µ

approaches 0 (c), the positive mode and negative mode surfaces together converge onto the neutral surface (chartreuse). The complex domain now
consists of two pairs of antipodal loops, and the generalized mode µ surface has a topology of a double-torus. The bifurcation between the two
cases occurs (b) when the complex domain resembles a figure-eight and the generalized mode µ surface has a non-manifold point.

above analysis. Note that neutral surfaces are the only non-orientable
mode surfaces, which highlights their topological significance.

The complex domain boundary is characterized by a degree-six polyno-
mial, which makes its extraction challenging. Fortunately, similar to
degenerate curves in a 3D linear tensor field which can be character-
ized by an elliptical loop, the complex domain boundary can also be
parameterized as illustrated in Figure 6. Due to the four-fold symmetry
in the complex domain boundary, it is sufficient to focus on one quarter
of the curve, which, in the coordinate system

α = vT
2 T v2, (7)

β = vT
2 T 2v2 (8)

is characterized by

0 = 1−2β +
1
2

cos2
θα

2. (9)

This is the equation of a parabola, which can be parameterized by α

(Lemma 4 in Appendix A). Each α gives one corresponding β from
Equation 9 and thus one point in each of the four quarters of the complex
domain boundary (Figure 6).

5 EXTRACTION OF MODE SURFACES

In this section, we describe our mode surface extraction algorithm, the
input of which is a tetrahedral mesh, at whose vertices tensors are given.
These tensor values are linearly interpolated into the faces and interiors
of each tet. This results in a piecewise linear 3D tensor field, i.e. inside
each tet, the tensor field is linear. Similarly, inside each face, we have a
2D linear tensor field.

The pipeline of our unified mode surface (including neutral surfaces)
extraction is illustrated in Figure 7 with an example tensor field. First,
we extract mode curves inside each face in the mesh, including internal
loops. Next, for each tet with known mode curves in any of its faces, we
extract the mode surface inside the tet. Finally, mode surfaces extracted
from the tets will be stitched together along shared faces. We describe
the detail of each step next.

Fig. 6: The complex domain boundary has a four-fold symmetry, with
each quarter parameterizable. A quarter segment can intersect the hori-
zontal axis and the vertical axis at one point each, making the complex
domain a single region (the outermost loop). This corresponds to the
case shown in Figure 5 (a). In contrast, a quarter segment can also in-
tersect the horizontal axis only (inner-most case), splitting the complex
domain into two regions (the innermost loop). This corresponds to the
case shown in Figure 5 (c). The bifurcation occurs when the quarter
segments pass through the origin (the loop between the outermost and
innermost loops), which corresponds to Figure 5 (b) .

5.1 Mode Curve Extraction inside a Face

Mode curves inside a plane can consist of a number of open curves
and loops. If an open curve does not intersect any edge of a triangle
in our mesh, the curve must be entirely outside the triangle and is not
part of mode curves for the triangle. In contrast, there exist loops that
are entirely inside the triangle (thus valid) but do not intersect any of
the edges of the triangle. Thus, detecting mode curves for a triangle by
only detecting their intersections with the boundary edges can miss the
inner loops.

To overcome this problem, we use a property from Morse theory [22],
which states that for any level set loop of a function there must be at
least one local maximum or minimum of that function enclosed by the
loop. Based on this insight, we first extract the critical points of the
mode function inside the plane containing the triangle. Next, for each
extremum (a critical point that is not a saddle) inside the triangle, we
insert a new vertex at the point and subdivide the triangle into three
triangles. In Theorem 6 (Appendix A) we show that there are at most
four extrema inside a plane P containing the triangle. Only the ones that



Fig. 7: The pipeline of our mode extraction algorithm for a given tet:
starting from mode curves extracted from the faces of a tet (a), we
identify the region in the medium eigenvector manifold bounded by
the aforementioned curves (b). The region is then triangulated (c) and
mapped back to the XY Z space to give the mode surface in the tet (d).

are inside the triangle are valid. Thus, the aforementioned subdivision
process is executed at most four times for each face in the mesh. To
find the critical points of the mode function inside a plane P, we make
use of the fact that they must be solutions to the following system of
polynomial equations:

vh(u,v,w) = wg(u,v,w), (10)
w f (u,v,w) = uh(u,v,w), (11)

u2 + v2 +w2 = 1 (12)

where ∇det(uT1+vT2+wT3) = ( f (u,v,w),g(u,v,w),h(u,v,w)). Here,
T1, T2, and T3 is an orthonormal basis for the set of tensor values in-
side P given by the tensor field. In addition, (u,v,w) is a unit vector
such that T (x,y)

||T (x,y)|| = u(x,y)T1 + v(x,y)T2 +w(x,y)T3. Note that Equa-
tions 10 and 11 are both homogeneous cubic polynomials. Moreover,
if (u,v,w) is a solution, so is (−u,−v,−w). Furthermore, both (u,v,w)
and (−u,−v,−w) correspond to the same tensor, i.e. the same critical
point. Let u′ = u

w and v′ = v
w . The original system of equations is

transformed into the following system of two cubic equations:

v′h(u′,v′) = g(u′,v′),

f (u′,v′) = u′h(u′,v′) (13)

where f , g, and h are non-homogeneous cubic polynomials derived
respectively from f , g, and h with the change from u,v,w to u′,v′.
According to Bézout’s theorem [10], this system of cubic equations
is equivalent to a degree-nine polynomial which has nine solutions.
However, we show that two of the solutions are spurious and four other
solutions correspond to degenerate points in the plane P. Moreover, the
spurious solutions can be found by solving h(u,v,0) = 0 and u2 + v2 =
1, while the degenerate points can be found using the method of Roy
et al. [32]. Once these solutions are factored out, we obtain a cubic
polynomial whose roots, when real-valued, are additional critical points
(local extrema and saddles). We compute these roots using the Eigen

library [14]. For each solution in the form of u, v, and w values, we
recover T = uT1 + vT2 +wT3 which we use to find (x,y) such that
T (x,y) = T .

We can extract the intersection points of the mode curves with the
edges in the triangles (including the subdivided triangles). Starting
from these intersection points, we perform numerical tracing in the
direction perpendicular to the gradient of the mode function. This
guarantees that all internal loops in the mode curves are found. To trace
out the face intersections we use a numerical ODE integrator. This
leads to mode curves whose ends are on the edges of the face. Tracing
is finished when we exit the (possibly subdivided) triangle. We then
run a numerical root-finding algorithm [1] on the interpolation function
produced by the ODE integrator to accurately find the point where it
exits, which is connected to the closest edge intersection point.

5.2 Mode Surface Extraction inside a Tetrahedron

Once we have extracted mode curves from all the faces in the mesh, we
proceed to extract mode surfaces from inside each tet.

First, we gather the mode curves extracted from the four faces of the
tet and stitch open curves (those intersecting the edges of the tet) into
loops (Figure 7 (a): blue curves).

Next, for each sample point on the aforementioned mode curves, we
find the corresponding point on the medium eigenvector manifold
for the 3D linear tensor field in the tet. Therefore, the mode curves
(represented as polylines) on the boundary of the tet lead to a set
of curves (also represented as polylines) in the medium eigenvector
manifold (Figure 7 (b): blue curves).

Recall that a pair of antipodal points on the complex domain bound-
ary corresponds to the same point in the mode surface. Therefore, a
connected component in the polyline in the tet’s boundary can become
disconnected in the medium eigenvector manifold at the complex do-
main boundary (green points in Figure 7 (a) and (b)). To overcome this
problem, we need to not only find the exact intersection points of the
polylines with the complex domain boundary but also generate curves
connecting such points in the medium eigenvector manifold, which
correspond to segments of the complex domain boundary (Figure 7 (b):
green curves).

Detecting the existence of such points is relatively straightforward
as each such point corresponds to an antipodal pair in the medium
eigenvector manifold. Therefore, along a mode curve, such a point
divides the curve into two disconnected components, whose medium
eigenvectors are situated on opposite hemispheres of the medium eigen-
vector manifold. Consequently, for every segment in the polyline, we
check the dot product between the medium eigenvectors of the two end
points. If the sign of the dot product is negative, we mark the segment
as intersecting the complex domain boundary and proceed to find the
exact location of the intersection point through numerical root-finding
using Equation 6. This segment is then split into two with the insertion
of the newly found intersection point.

Once we have found all the complex domain boundary points in the
faces of the tet, we compute their corresponding antipodal point pairs
on the medium eigenvector manifold. To decide which segments on the
complex domain boundary are part of the mode surface, we make use
of the parameterization for the complex domain boundary (Figure 6).
This parameterization allows us to select a new point on the complex
domain boundary and check whether its corresponding point on the
mode surface is inside or outside the tet. This information is then used
to decide which segments along the complex domain boundary are part
of the mode surfaces inside the tet. Notice that our method is similar to
the method of Roy et al. [32] for computing degenerate curves, which
are parameterizable by an ellipse.



The segments along the complex domain boundary (Figure 7 (b): green
curves) and the polylines representing the mode curves from the faces
(Figure 7 (b): blue curves) bound the region in the medium eigenvector
manifold that corresponds to the mode surface inside the tet (Figure 7
(b): yellow region). To find the interior of this region, we perform a
constrained Delaunay triangulation on the set of sample points (from
mode curves and complex domain boundary segments). Since Delaunay
triangulation is normally defined on a plane, we take the stereographic
projection of the vertices as the stereographic projection maps circles
to circles and thus preserves the Delaunay condition. This leads to
a triangulation of the region with rather poor aspect ratios for the
triangles.

To improve the quality of the tessellation, we add more points inside
the region on the medium eigenvector manifold. Given our unified
approach of using the medium eigenvector manifold for mode surface
extraction (including neutral surfaces), we make use of the following
quad parameterization of the medium eigenvector manifold based on
the singularities in the neutral surfaces.

x = cosθ

√
f cos2 η +1,

y = cosθ sinη ,

z = cosη , (14)

where f =
2λ2(T )−λ3(T )−λ1(T )

λ3(T )−λ2(T )
, 0 ≤ η < π , and 0 ≤ θ < 2π . This

parameterization leads to a perfect quadrangulation of the medium
eigenvector manifold (Figure 7 (b): the quad grid) with the only irregu-
lar vertices in the quadrangulation being the singularities in the medium
eigenvector manifold (Figure 7 (b): yellow dots). After the grid points
inside the region are added, we perform a second constrained Delaunay
triangulation with both boundary and interior sample points. This leads
to improved aspect ratios in the triangulation (Figure 7 (c)).

Finally, we need to map the sample points from the medium eigenvec-
tor manifold back to the XY Z space while preserving the connectivity
among them to construct the mode surfaces inside the tetrahedron. To
map a point v2 in the medium eigenvector manifold to its corresponding
point in the XY Z space, we need to identify the tensor T whose medium
eigenvector is v2. The eigenvalues of T can be computed using Equa-
tion 2 given the mode value µ . The dominant eigenvector of T can be
computed from the asymmetric tensor A(v2) (Equation 5). This gives
us the tensor T . We can find its corresponding point in the XY Z space
by solving a system of linear equations [32].

5.3 Stitching Mode Surfaces from Adjacent Tets

To get a seamless mode surface, we need to stitch the sheets from
different tets across their common faces.

This step is relatively straightforward as we have computed mode
curves in the faces first. Therefore, mode surfaces from neighboring
tets already have matching polylines with the same vertices.

5.4 Neutral Surface Extraction

We use the same pipeline for both mode surfaces and neutral surfaces,
with the following two differences.

First, neutral surfaces and curves are characterized by degree-three
polynomials. Therefore, when finding the intersection with an edge,
we can directly compute them using the cubic formula.

Second, since there is no complex domain in the medium eigenvector

manifold for neutral surfaces, we do not need to detect the intersection
of mode curves with the complex domain boundary. Instead, we need
to find the singularities in the medium eigenvector manifold, which
correspond to straight lines in the XY Z space. Their intersection with
the boundary faces can be easily computed. Then the intersection
points corresponding to the same singularity are connected using a line
segment.

Other than these differences, our framework handles mode surfaces and
neutral surfaces in a unified fashion.

6 PERFORMANCE

Our methods can extract mode surfaces and neutral surfaces with higher
quality, i.e. the extracted surfaces are seamless and more accurate than
existing mode surface and neutral surface extraction methods [27, 32]
(Figure 3). The seamlessness of the extracted surfaces enables addi-
tional information about mode surfaces to be computed more robustly,
such as principal curvature directions (Figure 2).

In addition, our technique is faster than existing techniques. On av-
erage, our neutral surface extraction method is about 1.8 times faster
than the hybrid method introduced by Roy et al. [32], and our mode
surface extraction method is 5.3 times faster than the A-patches method
in [27]. Measurements were taken on a computer with Intel(R) Xeon(R)
E3-2124G CPU@ 3.40 GHz, 64GB of RAM, and an NVIDIA Quadro
P620 GPU. We used four test data sets: a block with a single compres-
sion force (Figure 1: 480000 tets), a block with a compression force
and an extension force (Figure 9: 450000 tets), a block with three com-
pression forces (Figure 10: 384000 tets), and a block with a twisting
compression force (Figure 13 in Appendix B: 286416 tets).

7 APPLICATIONS

The application of compressive loads is ubiquitous in engineering where
solids are extruded to designed geometries and liquids are compressed
in combustion engines, and in medical research where human or an-
imal organs are compressed to enable successful imaging processes.
On the other hand, compression is a challenging state to model and
elucidate. In fluid mechanics, Navier-Stokes modeling [5] applies to
incompressible fluids and needs a completely different solution scheme
when the fluids become compressible. In solid mechanics, a scalar
quantity referred to as the Poissons ratio [11] is used to dial from
polymers, which hardly compress, to materials that change volume
during compression. Here we examine four scenarios of compression
in a solid block by visualizing the mode surfaces of the stress tensor
fields. We vary boundary conditions on this block to reveal the material
behavior embedded in the stress tensors. Three scenarios (Figure 8) are
discussed in this section while the fourth is covered in Appendix B.

In the first scenario (Figure 8 (a)), there is a compression force on
the top of a cubic block. The resulting mode surfaces are displayed
in Figure 1. Notice that the volume is dominated by negative mode
surfaces (gold: indicating compression-dominant). In addition, the
network of degenerate curves leads to an interesting vascular structure
that is not commonly observed. This indicates that despite a simple
boundary condition, the shape of the block can also play an important

(a) (b) (c)

Fig. 8: Three scenarios of compression in a solid block.



Fig. 9: Mode surfaces of stress tensor fields for a rectangle block being
pushed and pulled simultaneously. The left side is compressed while
the right side is extended through boundary conditions applied at the
top.

role in deciding where uniaxial compression can occur.

We contrast compression against extension in our second scenario
(Figure 8 (b)), in which one side of the block is pushed down and
the other side is pulled up forming a dome-shaped dent and a dome,
respectively. Our visualization (Figure 9) confirms this, as all planar
degenerate curves (yellow: uniaxial compression) appear in the left
half and all linear degenerate curves (green: uniaxial extension) appear
in the right half of the block. In addition, we show the generalized
mode 0.97 surface. Notice the symmetry between the mode surfaces for
compression (left side) and extension (right side). While compression
and extension are usually conceptualized as two different types of
deformations (respectively volume loss and gain), to our knowledge
the symmetry between them in the generalized mode surfaces is new
to the research and application communities. In addition, Figure 2
(b) shows the major principal curvature directions for the generalized
mode 0.99 surface. Notice that in the negative mode part of this surface
(gold), the major principal curvature direction is mostly aligned with
the width of the block except in the middle where it is aligned with the
length of the block. The sudden change in the directions is a reflection
of the fact that due to the boundary condition, the middle part of this
surface is being pushed out more along the block than across the block.
The collision of compression directions leads to some trisectors on the
surface near the middle. Due to symmetry, similar deformations of the
surface (this time extension) can be observed on the positive mode part
of the surface (teal). The number and location of the umbilical points
(e.g. trisectors) can indicate uniform compression or extension and
will be investigated further. Note that such observations are impossible
without the ability to generate seamless meshes for mode surface (e.g.
compare this to Figure 2 (a)).

Our third example studies spatially consecutive compressive loads
(Figure 8 (c)) which can be seen on highway bridges where fleets of
heavy trucks are parked due to traffic lights or in structures where
pairs of nuts and bolts are installed at a number of evenly spaced
locations. Intuitively, we can see that these compressive “holding-
down” points create a wave form in the underlying geometry. In our
example where we have three consecutive compressive loads, we note
that through analyzing the mode surfaces of the stress tensor field
(Figure 10 (a)), this wave shape can be observed at mode value −0.53
(gold). As the mode value moves towards zero, the wave shape subsides
(Figure 10 (b)). After this mode value, only the periodic behavior of the
regions between the compressive loads remains. Between each pair of
compressive loads, there is a tubular region indicating that the material
between the loads can be in both extension and compression at the
same time.

8 CONCLUSION AND FUTURE WORK

In this paper, we provide to our knowledge the first approach to the
seamless extraction of mode surfaces (including neutral surfaces). The

(a) µ =±0.53

(b) µ =±0.50

Fig. 10: Mode surfaces of stress tensor fields of a rectangular block
being pushed down at three locations.

method is faster and of higher quality than existing methods of mode
(neutral) surface extraction. Together with the degenerate curve extrac-
tion algorithm of Roy et. [32], our approach represents the first unified
approach for the seamless extraction of mode surfaces of any mode.
At the core of the approach is our novel topological analysis of mode
surfaces (including degenerate curves and neutral surfaces) using the
same medium eigenvector manifold.

In addition, we apply our technique to a number of data sets to fo-
cus on analyzing stress tensor fields for compressive behavior that is
fundamental in solid mechanics. We present a new demonstration of
compression in volumes to indicate different behavior from different
regions of the material.

Our current sampling strategy for the medium eigenvector manifold
does not guarantee best quality of the triangle mesh such as the aspect
ratios of the triangles. We plan to explore other sampling patterns to
improve on this.

There are other types of feature surfaces in 3D symmetric tensor fields,
such as extremal surfaces [40] as well as magnitude surfaces and
anisotropy index surfaces [27]. Adapting our parameterization ap-
proach to those surfaces is also a future research avenue.

Extending tensor field analysis and visualization to more complex phys-
ical behaviors that are hybrids of different kinds of deformation can also
be fruitful future research directions. Furthermore, correlating patterns
observed in the geometry of mode surfaces to the load configurations
has the potential of increasing our understanding and thus control in
applications such as tire performance and bridge maintenance. We plan
to explore these avenues in our future research.
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