
A THEORETICAL RESULTS AND PROOFS

Theorem 1. Given a 3D linear tensor field T (x,y,z) = T0 + xTx +
yTy + zTz, a mode value 0 < µ < 1, and a unit vector v2, the num-
ber of points on the generalized mode µ surface with ±v2 as its
medium eigenvector is the same as the number of real eigenvalues
of the 2D asymmetric tensor A = R θ
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4
T ′R θ
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4
where T ′ is the pro-

jection of characteristic tensor T onto the plane P with normal v2,

θ = arcsin(
√

3tan( 1
3 arcsin(µ))), and Rφ =

(
cosφ −sinφ

sinφ cosφ

)
. The

real-valued eigenvectors of A give rise to the dominant eigenvectors of
the corresponding points in the generalized mode µ surface.

Proof. As pointed out in [32], given a tensor t = λ1v1vT
1 +λ2v2vT

2 +

λ3v3vT
3 in the linear tensor field T (x,y,z) = T0+xTx+yTy+zTz, where

v1, v2, and v3 are respectively the major, medium, and minor eigenvec-
tors, we have

vT
1 T v1 + vT

2 T v2 + vT
3 T v3 = 0. (15)

In addition, since T is the characteristic tensor of T (x,y,z),

0 =
〈

T ,λ1v1vT
1 +λ2v2vT

2 +λ3v3vT
3

〉
= λ1 trace(T v1vT

1 )+λ2 trace(T v2vT
2 )+λ3 trace(T v3vT

3 )

= λ1vT
1 T v1 +λ2vT

2 T v2 +λ3vT
3 T v3. (16)

according to the cyclic property of trace [12].

Combining this equation with Equation 15, we have

0 = (λ1−λ2)vT
1 T v1− (λ2−λ3)vT

3 T v3. (17)

Notice that the major eigenvector v1 and minor eigenvector v3 must be
inside P, the plane that contains the point where t occurs in the field
and whose normal is v2. Let v′1 and v′3 be v1 and v3 expressed in the
coordinate system of P. Consequently, Equation 17 can be rewritten as
the following:

0 = (λ1−λ2)v′T1 T ′v′1− (λ2−λ3)v′T3 T ′v′3. (18)

We first consider the case when µ(t) > 0 and use the right-handed
coordinate system where v3 is the horizontal axis and v1 is the vertical
axis.

For simplification purposes, we define u = kv′1 + lv′3 and w = kv′1− lv′3
where k =

√
λ1−λ2
λ1−λ3

and l =
√

λ2−λ3
λ1−λ3

. Therefore, v′1 = u+w
2k and v′3 =

u−w
2l .

It is straightforward to verify that u and w both have unit length. More-
over, since both v′1 and v′3 are unit vectors and have the same length, it
can be verified that

u ·w = k2− l2 =
λ1 +λ3−2λ2

λ1−λ3
. (19)

Since λ1 +λ2 +λ3 = 0, we have

λ1 +λ3−2λ2 =−3λ2 =
√

6sin(
1
3

arcsin(µ)). (20)

Similarly, it can be shown that

λ1−λ3 =
√

2−3λ 2
2 =
√

2cos(
1
3

arcsin(µ)). (21)

Consequently,

u ·w =
λ1 +λ3−2λ2

λ1−λ3
=
√

3tan(
1
3

arcsin(µ)) = sinθ . (22)

Notice that since k ≥ 0 and l ≥ 0, w is always counterclockwise of u.
Therefore, w is obtained by rotating u counterclockwise by π

2 −θ . Note
that Equation 18 can be rewritten in terms of u and w as wT T ′u = 0, or
equivalently w · (T ′u) = 0. That is, w⊥T ′u.

As v′1 is a bisector of u and w, v′1 can be obtained by either rotating u
counterclockwise by π

4 −
θ

2 or rotating w counterclockwise by θ

2 −
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4 .
That is, u = R θ
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4
v′1 and w = R π
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2
v′1. Therefore,

R π
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v′1. (23)

Since v′3 ⊥ v′1, we have v′1 = R− π

2
v′3. Consequently, R π
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v′1, which is equivalent to R− π
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v′3 ⊥ T ′R θ
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4
v′1. Rotating

both sides conterclockwise by π
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2 , we have

v′3 ⊥ R π
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v′1. (24)

Recall that A = R θ
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. Then v′3 ⊥ Av′1.

This means that Av′1 must be orthogonal to a vector that is orthogonal to
v′1. As v′1 is in two dimensions, this implies that Av′1 is a scalar multiple
of v′1. Consequently, v′1 is an eigenvector of A.

In the case where µ(t)< 0, we use the right-handed coordinate system
of P such that v1 is now the horizontal axis and v3 is the vertical axis.

We again define u= kv′1+ lv′3 but negate w, i.e. w=−kv′1+ lv′3. We can
still show that u and w are unit vectors and u ·w =

√
3tan( 1

3 arcsin(µ)).

From here, we follow the same argument for the case where µ(t)> 0
except that we need to reverse the roles of v′1 and v′3. This leads to that
v′3 is an eigenvector of A = R θ
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.

We now consider a number of cases. First, when A has zero real eigen-
values, its eigenvectors must be complex-valued. Since the eigenvectors
of a 3D symmetric tensor cannot be complex-valued, there are no points
on the generalized mode µ surface with v2 as its medium eigenvectors.

When A has only one real eigenvalue, there is only one point in the gen-
eralized mode µ surface whose medium eigenvector is v2. Depending
on the sign of the mode value of this point, either its major eigenvector
v1 (µ(t) > 0) or minor eigenvector v3 (µ(t) < 0) is given by the cor-
responding eigenvector of A. Recall that the dominant eigenvector is
the major eigenvector v1 when µ(t) = µ > 0 and the minor eigenvector
v3 when µ(t) = −µ < 0. Therefore, the eigenvector of A gives the
dominant eigenvector of the point in the generalized mode µ surface.



To see the uniqueness, we note that if there is another point in the
generalized mode µ surface with the same combination of v1, v2, v3
and µ(t), then the tensor must be a multiple of t. However, as pointed
out by Roy et al. [32], if a tensor t appears in a 3D linear tensor field,
then none of its multiples can appear in the same field. Consequently,
there is only one point in the generalized mode µ surface with v2 as its
medium eigenvector.

On the other hand, when A has two real eigenvalues, the major eigen-
vector and the minor eigenvector of A each corresponds to a point in
the generalized mode µ surface whose medium eigenvectors are given
by v2. If the point has a positive mode value, its major eigenvector
v1 is given by the corresponding eigenvector of A. In contrast, if the
point has a negative mode value, its minor eigenvector v3 is given by
the corresponding eigenvector of A.

What remains to be shown is that using−v2 as the medium eigenvector,
we arrive at the same set of points as using v2. Again, we have the two
cases µ(t)> 0 and µ(t)< 0.

For the first case, note that the rotations in the definition of A are
around v2, and they are reversed when −v2 is chosen as the medium
eigenvector. Assume that A’s eigenvalues are λ̂1 and λ̂2, and that v′1 is
the eigenvector corresponding to λ̂1. Then we find the eigenvalue on
the opposite side of the sphere with

R−( θ
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v′1 = AT v′1

= R π

2
(R− π
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2
ad j(A)R− π

2
v′1

= R π

2
ad j(A)v′3

= R π

2
λ̂2v′3

= λ̂2R π

2
v′3

= λ̂2v′1 (25)

where we have used a property of asymmetric 2x2 tensors [33] that if

A =

[
a b
c d

]
is a 2D asymmetric tensor and Rθ is the two-dimensional

counterclockwise rotation matrix of angle θ ,

R− π

2
AT R π

2
=

[
d −b
−c a

]
= adj(A) (26)

is the adjugate of A, whose eigenvectors are the same as A’s and the roles
of whose major and minor eigenvalues are swapped. Consequently, the
point on the generalized mode µ surface with v1 given by the major
eigenvector of A(v2) is the same point whose v1 is given by the minor
eigenvector of A(−v2).

A similar argument applies when µ(t)< 0.

To summarize, v2 and −v2 correspond to the same set of points in the
generalized mode µ surface. Moreover, when there are two points
with v2 and −v2 as medium eigenvectors, each of A(v2) and A(−v2)
corresponds to exactly one point in the generalized mode µ surface
whose dominant eigenvector (as a 3D symmetric tensor) is given by the
major eigenvector of A (as an asymmetric tensor).

Theorem 2. Given a 3D linear tensor field T (x,y,z) = T0 + xTx +
yTy + zTz and a mode value µ , the real domain in the medium eigen-
vector manifold corresponding to µ is characterized by 1

2 − vT
2 T ′2v2 +

1
4 cos2 θ(vT

2 T ′v2)
2 ≥ 0 where θ = arcsin(

√
3tan( 1

3 arcsin(µ))). The
boundary between the real and complex domain occurs if and only if
the equal sign holds.

Proof. Let T ′ be the projection of the characteristic tensor T of the
tensor field onto the plane perpendicular to unit medium eigenvectors v2.
We consider the asymmetric tensor field A(v2) = R θ
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4
.

As mentioned in [36], a 2× 2 asymmetric matrix A can be uniquely
decomposed as follows:

A = γd

[
1 0
0 1

]
+ γr

[
0 −1
1 0

]
+ γs

[
cosτ sinτ

sinτ −cosτ

]
(27)

where γd , γr, and γr are the isotropic, rotational, and anisotropic compo-
nents, respectively. Note that τ gives rise to the eigenvector information
of A. Depending on the discriminant of ∆ = γ2

s − γ2
r , A has either two

real eigenvalues (∆ > 0) or two complex-valued eigenvalues (∆ < 0).
When ∆ = 0, A has a pair of repeating eigenvalues. For our asymmetric
tensor field, this implies that v2 is on the complex domain boundary in
the medium eigenvector manifold. Notice that this condition is both
necessary and sufficient. To compute ∆, we need to compute both γd
and γr.

γd =
1
2

trace(A)

=
1
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trace(R θ
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)

=
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trace(R θ
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4
T ′)

=
1
2

trace(Rθ T ′)

=
1
2

trace(cosθ IT ′)+
1
2

trace
(

sinθ

[
0 −1
1 0

]
T ′
)

= cosθ
trace(T ′)

2
(28)

where the second term vanishes because T ′ is symmetric.

Since trace is the same in any basis, we have

trace(T ′) = v′T1 T ′v′1 + v′T3 T ′v′3.

Recall that T ′, v′1, and v′3 are respectively the projection of T , v1, and
v3 onto the plane perpendicular to v2. Thus,

v′T1 T ′v′1 + v′T3 T ′v′3 = vT
1 T v1 + vT

3 T v3 =−vT
2 T v2 (29)

in which the second equality above comes from rearranging Equa-
tion 15.

Consequently,

γd =−cosθ
vT

2 T v2

2
. (30)

A similar calculation shows that

γr = sinθ
trace(T ′)

2
=−sinθ

vT
2 T v2

2
. (31)

Notice that γ2
d + γ2

r = (
vT

2 T v2
2 )2. To compute γs it is convenient to find

the squared magnitude of A, which is



trace(AT A) = trace((R θ
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) = trace(T ′2).

(32)

Since v2 has unit length, the matrix I− v2vT
2 is a projection matrix and

is thus equal to its square. Using this to project the tensor T , we have

trace(T ′2) = trace((I− v2vT
2 )T (I− v2vT

2 )
2T (I− v2vT

2 ))

= trace(T (I− v2vT
2 )

2T (I− v2vT
2 )

2)

= trace(T (I− v2vT
2 )T (I− v2vT

2 ))

= trace(T 2
)− trace(T v2vT

2 T )

− trace(T 2v2vT
2 )+ trace(T v2vT

2 T v2vT
2 )

= 1−2vT
2 T 2v2 +(vT

2 T v2)
2. (33)

Because A’s magnitude is 2(γ2
r + γ2

s + γ2
d ), we can use this to find γs.

γ
2
s =

1
2

trace(AT A)− γ
2
d − γ

2
r

=
1
2
− vT

2 T 2v2 +
1
2
(vT

2 T v2)
2−
(

vT
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2
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=
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4
(vT

2 T v2)
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The real domain is characterized by γ2
s ≥ γ2

r , i.e.

1
2
− vT

2 T 2v2 +
1
4
(vT

2 T v2)
2 ≥ (−sinθ

vT
2 T v2

2
)2 (35)

or equivalently, 1
2 − vT

2 T 2v2 +
1
4 cos2 θ(vT

2 T v2)
2 ≥ 0. The complex

domain boundary is thus

1
2
− vT

2 T 2v2 +
1
4

cos2
θ(vT

2 T v2)
2 = 0 (36)

Corollary 3. Given a 3D linear tensor field T (x,y,z) = T0 + xTx +
yTy + zTz and two mode values µ1 and µ2 such that 0≤ µ1 < µ2 ≤ 1,
the complex domain on the medium eigenvector manifold corresponding
to µ1 is a proper subset of that corresponding to µ2.

Proof. The complex domain is characterized by the following inequal-
ity opposite that for the real domain, i.e.,

1
2
− vT

2 T 2v2 +
1
4

cos2
θ(vT

2 T v2)
2 < 0. (37)

Recall that θ = arcsin(
√

3tan( 1
3 arcsin(µ))) (Theorem 1), which im-

plies θ is monotonically increasing with respect to mode values µ .
Consider the range of θ which is [0, π

2 ], cos2 θ is a monotonically
decreasing function with respect to µ . That is, for µ1 < µ2, their
corresponding θ ’s satisfy cos2θ1 > cos2 θ2.

Consequently, a unit vector v2 that satisfies

1
2
− vT

2 T 2v2 +
1
4

cos2
θ1(vT

2 T v2)
2 < 0 (38)

must also satisfy

1
2
− vT

2 T 2v2 +
1
4

cos2
θ2(vT

2 T v2)
2 < 0. (39)

That is, if v2 is in the complex domain for µ1 then it must also reside
in the complex domain µ2. The reverse is not true. Consequently, the
complex domain for µ1 is a proper subset of that of µ2.

Lemma 4. Given a 3D linear tensor field T (x,y,z) = T0 +xTx +yTy +
zTz and a mode value µ , the complex domain boundary corresponding
to µ is parameterizable by α = v2T v2.

Proof. Let λ 1 ≥ λ 2 ≥ λ 3 be the eigenvalues of T and v1, v2, and v3
be the corresponding eigenvectors. For convenience, we choose the
coordinate system {v1,v2,v3} in which T is a diagonal matrix. Let

v2 =

a
b
c

 and m =

mx
my
mz

=

a2

b2

c2

. Equation 36 implies

0 = 1−2(mxλ
2
1 +myλ

2
2 +mzλ

2
3)

+
1
2

cos2
θ(mxλ 1 +myλ 2 +mzλ 3)

2. (40)

This equation’s dependence on only mx = a2, my = b2, and mz = c2

implies an eight-fold symmetry for the medium eigenvector manifold,
and thus the complex domain boundary. That is, if a unit vector (a,b,c)
is on the complex domain boundary, so is (±a,±b,±c).

Therefore, we only need to parameterize the segment of the complex
domain boundary where a,b,c≥ 0. The other seven segments can be
parameterized in a similar fashion.

Notice that m is always on the plane mx +my +mz = ‖v2‖2 = 1. In the
coordinate system

α = λ 1mx +λ 2my +λ 3mz = vT
2 T v2 (41)

β = λ
2
1mx +λ

2
2my +λ

2
3mz = vT

2 T 2v2 (42)

Equation 40 becomes

0 = 1−2β +
1
2

cos2
θα

2 (43)

which is the equation of a parabola that can be parameterized by α .
Each α gives one corresponding β from Equation 43 and thus one point
on the segment of the complex domain boundary where a,b,c≥ 0.

Theorem 5. Given a 3D linear tensor field T (x,y,z) = T0 + xTx +
yTy + zTz, let µ is the mode of the characteristic tensor T and

µ0 =
√

1−µ
2. The topology of the generalized mode µ surface is

a topological torus when µ > µ0 and a topological double-torus when
µ < µ0.

Proof. We reuse the expressions mx, my, mz, α , and β from Lemma 4.
Note that mx ≥ 0, my ≥ 0, mz ≥ 0, and mx +my +mz = 1. Therefore,
points satisfying these conditions form an equilateral triangle in the
plane mx +my +mz = 1, which is illustrated in Figure 11.

Recall that T is a unit, traceless tensor with a non-positive determinant
(Equation 3). We have



(a) Before bifurcation (b) Bifurcation (c) After bifurcation

Fig. 11: In the triangle bounded by mx = 0, my = 0, and mz = 0 in
the plane mx +my +mz = 1, the corners of the triangle are as follows:
(0,0,1) (red), (1,0,0) (green), and (0,1,0) (cyan). When µ decreases,
the complex domain (grey regions) reduce in sizes. The complex
domain boundary initially intersects each of the mx = 0 and my = 0
edges once (a). After the bifurcation point (b), the complex domain
only intersects the my = 0 edge (two points). The topology of the
generalized mode µ surface depends on whether there is a solution
when mx = 0.

λ 1 +λ 2 +λ 3 = 0 (44)

λ
2
1 +λ

2
2 +λ

2
3 = 1 (45)

λ 1 ≥ λ 2 ≥ 0≥ λ 3 (46)

Plugging in λ 3 = −λ 1−λ 2 into Equation 45, we have λ
2
1 +λ 1λ 2 +

λ
2
2 =

1
2 . This implies that λ

2
1+λ

2
2 <

1
2 . Consequently, λ

2
1 <

1
2 , λ

2
2 <

1
2 ,

and λ
2
3 >

1
2 .

For degenerate curves, i.e. µ = 1, cosθ = 0 and Equation 43 reduces to

0 = 1−2β , (47)

which further reduces to 1− 2λ
2
i at the corners of the triangle. Con-

sequently, this function is negative at (0,0,1) (complex domain) and
positive at (1,0,0) and (0,1,0) (real domain). Because the function is
linear, its zeroth levelset (complex domain boundary) must intersect
each of the edges mx = 0 and my = 0 exactly once. The subtrian-
gle formed by the two intersection points and (0,0,1) is the complex
domain corresponding to µ = 1.

As µ decreases, the complex domain (grey regions in Figure 11) re-
duce in size (Lemma 4), and the parabola characterized by Equation 43
moves lower while still intersecting mx = 0 and my = 0 at one point each
(the yellow dots on the two edges in (a)). Due to the aforementioned
eight-fold symmetry in the medium eigenvector manifold (Lemma 4),
this segment of the parabola corresponds to eight segments that consti-
tute the complex domain boundary in the medium eigenvector manifold.
Due to the antipodal symmetry, we only consider the four segments
where c > 0. Since the original parabolic segment touches both the
mx = 0 and my = 0 edges, these four segments will be connected, form-
ing a single loop (Figure 6: the outermost loop). Note that due to the
antipodal symmetry, the other four segments in the medium eigenvector
manifold (c < 0) also form a single loop. Moreover, this loop is to be
identified with the loop where c > 0. The real domain in the medium
eigenvector manifold is thus the part of the sphere between these two
loops. Gluing the two loops based on the antipodal symmetry results in
a space without a boundary, the torus, which is homeomorphic to the
generalized mode µ surface.

The above situation changes when the parabola intersects the corner
of mx = 0 and my = 0 plus an additional point on my = 0 (Figure 11

(b)). It can be shown that this occurs when µ =
√

1−µ
2, which is

the bifurcation point. When this happens, the four segments where
c > 0 form a figure-eight (Figure 6: the loop between the outermost and
innermost loops). The real domain in the medium eigenvector manifold
is thus the part of the sphere between this loop and its antipodal image.
Gluing the two figure-eights results in a surface that has a non-manifold
point corresponding to the center of the figure-eight. That is, the
generalized mode µ surface in this case is a non-manifold surface.

Decreasing µ further, the parabolic segment only intersects the my = 0
at two points (Figure 11 (c)). This implies that the four corresponding
segments (c > 0) in the medium eigenvector manifold form two loops
(Figure 6: the innermost loop). Similarly, the four segments (c< 0) also
form two loops. The real domain is the part of the sphere between the
four loops. Gluing the four loops pairwise according to the antipodal
symmetry results in a sphere with two handles attached, i.e. double-
torus. This is the topology of generalized mode µ surface when µ < µ0.

When µ = 0, it is straightforward to verify that the parabolic segment
degenerates to a single point, and the aforementioned four loops shrink
to two pairs of antipodal points:(

±
√

λ 1−λ 2

λ 1−λ 3
0 ±

√
λ 2−λ 3

λ 1−λ 3

)
(48)

Each of the pairs corresponds to one of the two singularities in the
medium eigenvector manifold for neutral surfaces [32].

Theorem 6. Given a 3D linear tensor field T (x,y,z) = T0 + xTx +
yTy + zTz and a plane P, the critical points of the mode function on the
plane P consist of at most four extrema.

Proof. On the plane P, the tensor field T (x,y,z) is still a linear tensor
field. Therefore, without the loss of generality, we assume the plane
P to be the XY plane. If this is not the case, we can simply perform a
space transformation so that P becomes the XY plane under the new
coordinate system.

In the XY plane, the tensor field has the form T (x,y) = T0 + xTx + yTy.

We define a map χ(x,y) = T (x,y)
‖T (x,y)‖ from the plane P to the set of

unit tensors. Since the tensors on the plane is a combination of T0,
Tx, and Ty, the image of this map together with its negation forms a
two-dimensional sphere in the linear subspace spanned by T0, Tx, and
Ty. The map χ is injective because if a tensor has already appeared
in a plane, its multiples cannot. Furthermore, χ is locally surjective.
Therefore, the set of critical points of the mode function in the plane
P has a one-to-one correspondence to the critical points of the mode
function on the aforementioned two-dimensional sphere.

The mode of a unit tensor T is 3
√

6det(T ), which means that the critical
points of the mode function on the sphere can be found by computing
the critical points of the determinant function det(T ) on the sphere.
For convenience, we choose T1,T2,T3 to be a orthonormal basis for the
space spanned by T0, Tx, and Ty.

The critical points of a function defined on the sphere are the points
where its gradient is colinear to the sphere’s normal. Thus, the critical
points of the determinant function satisfy

∇det(uT1 + vT2 +wT3)×

u
v
w

= 0 (49)

u2 + v2 +w2 = 1. (50)



Let

∇det(uT1 + vT2 +wT3) =

 f (u,v,w)
g(u,v,w)
h(u,v,w)

 (51)

where f (u,v,w), g(u,v,w), and h(u,v,w) are quadratic polynomials.
Thus, Equation 49 consists of the following three cubic equations:

vh(u,v,w) = wg(u,v,w)
w f (u,v,w) = uh(u,v,w)
ug(u,v,w) = v f (u,v,w). (52)

Together with the condition u2 + v2 + w2 = 1, we have an over-
determined system of three cubic equations and one quadratic equation.
Fortunately, the three cubic equations (Equation 52) are almost redun-
dant. To see this, notice that multiplying the first two of these equations
gives rises to

vw f (u,v,w)h(u,v,w) = uwg(u,v,w)h(u,v,w) (53)

When w 6= 0 and h(u,v,w) 6= 0, the above equation reduces to the third
cubic equation ug(u,v,w) = v f (u,v,w). This shows the redundancy of
over-determined system.

After removing the redundant third equation, we get the system

vh(u,v,w) = wg(u,v,w) (54)
w f (u,v,w) = uh(u,v,w) (55)

u2 + v2 +w2 = 1, (56)

which has up to 18 complex solutions based on Bézout’s theo-
rem [10]. However, there are some spurious solutions. Note that
for vw f (u,v,w)h(u,v,w) = uwg(u,v,w)h(u,v,w) to be equivalent to
ug(u,v,w) = v f (u,v,w), we require that w 6= 0 and h(u,v,w) 6= 0. As-
suming that w = 0, then we must have vh(u,v,w) = 0 = uh(u,v,w).
Since u and v cannot be both zeros (or the vector (u,v,w) is the zero
vector), we must have h(u,v,w) = 0.

Solutions satisfying h(u,v,0) = 0 and u2 + v2 = 1 have four complex
solutions, which are the spurious solutions to our system. Consequently,
we have up to 18−4 = 14 complex solutions, thus 14 real solutions at
most. Note that if (u,v,w) is a solution, so is (−u,−v,−w). Moreover,
they represent the same tensor. Consequently, there are only up to seven
real solutions, i.e. up to seven critical points in the mode function in
the plane.

The Euler Characteristic of a sphere is two [2], which means that the
number of extrema is always two more than the number of saddles
according to Morse theory [22]. Together with the fact that there are
at most 14 critical points, we can conclude that there are at most eight
extrema on the sphere. Since the antipodal points on the sphere give
the same point on the plane, we have at most four extrema of the mode
function on the plane P.

B ONE MORE APPLICATION SCENARIO

We provide one more scenario of compression on a block (Figure 12)
in which the compressive load is misaligned with the natural geometric
orientation of the block due to the addition of a slanted slab on the
top of the block. This slanted slab presses down on the block. At the
bottom of the block, we also add a full-length layer with a more rigid

(a)

Fig. 12: Another scenario of compression in a solid block.

(a) Neutral Surface

(b) µ =±0.4

Fig. 13: Mode surfaces of stress tensor fields of a rectangular block
being pushed down by a slanted slab.

material. This set-up aims to provide a simplified representation of a
tire tread block anchored on some steel belts that hold the tire together
while driving on hard pavement. Nonetheless, this type of boundary
condition is not limited to tire design. It can be due to misuse of the
structure. In particular, both cases exist on tires, i.e. some designs angle
tread blocks from the circumferential direction of the tire to facilitate
rainwater drainage while irregular wear such as tire cupping induces
uneven tread block wear on the shoulders of the tire.

The neutral surface of the stress is shown in Figure 13 (a), which,
interestingly, reflects the existence of the slab. In addition, there are
two sheets of neutral surfaces attached to the top face, two sheets
attached to the sidewalls, and two tubes that connect the front and back
faces. The location of these surfaces which indicate pure shear regions
match our expectation due to our design of the boundary conditions.
In addition, other mode surfaces can also provide meaningful insight.
For example, we show the generalized mode 0.4 surface in Figure 13
(b). While the positive part of this surface (teal) and the negative part
of the surface (gold) both approximate the neutral surface (Figure 13
(a)), the similarity stops there. The positive part of the mode surface
contains additional sheets that are not present in the negative part of the
mode surface. This indicates that despite the compression-dominant
boundary condition, extension can exist in the middle of the volume.
Seeing this positive mode surface confirms the bulging effect from
compression.

This visualization can potentially augment the definition of uniaxial
compression, the most fundamental description of compression nu-
merically, in which the compressive forces are not aligned with the
underlying geometry.


